J. Lefort-Besnard, K. Vogeley, L. Schilbard, G. Varoquaux, B. Thirion, G. Dumas, D. Bzdok
Translational Psychiatry
Publication year: 2020

Abstract

We simultaneously revisited the Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule (ADOS) with a comprehensive data-analytics strategy. Here, the combination of pattern-analysis algorithms and extensive data resources (n = 266 patients aged 7–49 years) allowed identifying coherent clinical constellations in and across ADI-R and ADOS assessments widespread in clinical practice. Our clustering approach revealed low- and high-severity patient groups, as well as a group scoring high only in the ADI-R domains, providing quantitative contours for the widely assumed autism subtypes. Sparse regression approaches uncovered the most clinically predictive questionnaire domains. The social and communication domains of the ADI-R showed convincing performance to predict the patients’ symptom severity. Finally, we explored the relative importance of each of the ADI-R and ADOS domains conditioning on age, sex, and fluid IQ in our sample. The collective results suggest that (i) identifying autism subtypes and severity for a given individual may be most manifested in the ADI-R social and communication domains, (ii) the ADI-R might be a more appropriate tool to accurately capture symptom severity, and (iii) the ADOS domains were more relevant than the ADI-R domains to capture sex differences.

Leave a Reply

Your email address will not be published.