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A B S T R A C T   

Diagnostic criteria used in autism research have undergone a shift towards the inclusion of a larger population, 
paralleled by increasing, but variable, estimates of autism prevalence across clinical settings and continents. A 
categorical diagnosis of autism spectrum disorder is now consistent with large variations in language, intelli-
gence, comorbidity, and severity, leading to a heterogeneous sample of individuals, increasingly distant from the 
initial prototypical descriptions. We review the history of autism diagnosis and subtyping, and the evidence of 
heterogeneity in autism at the cognitive, neurological, and genetic levels. We describe two strategies to address 
the problem of heterogeneity: clustering, and truncated-compartmentalized enrollment strategy based on pro-
totype recognition. The advances made using clustering methods have been modest. We present an alternative, 
new strategy for dissecting autism heterogeneity, emphasizing incorporation of prototypical samples in research 
cohorts, comparison of subgroups defined by specific ranges of values for the clinical specifiers, and retesting the 
generality of neurobiological results considered to be acquired from the entire autism spectrum on prototypical 
cohorts defined by narrow specifiers values.   

1. Background 

There has been a surge in the reported prevalence of autism (from 
1:150 in 2000–1:36 in 2020) (Maenner et al., 2023). This increase is 
attributed to a combination of the evolution of diagnostic criteria, case 
ascertainment issues, and socio-economic factors (Fombonne, 2018). 
There is little evidence to suggest that the increase is associated with 
environmental or genetic changes (Taylor et al., 2020). Recent 
meta-analytical work indicates that effect sizes have decreased by up to 
80% in studies comparing neurocognitive variables between autism and 
neurotypical controls. Such a decline is evident for frequently used 
behavioral measures of emotional recognition, planning, and the ca-
pacity of cognitive perspective taking, together with brain size and EEG 
characteristics (Rodgaard et al., 2019). Furthermore, an autism diag-
nosis is given to individuals whose behavior is increasingly convergent 

with that of the non-autistic population (Arvidson et al., 2018). These 
findings suggest that the increase in autism prevalence may be partially 
caused by a broadening of the autism diagnosis. In parallel, a 
meta-analysis of the effect sizes of non-pharmacological early in-
terventions has revealed a minimal or no overall effect in studies with a 
rigorous methodology (Sandbank et al., 2020), and authoritative prac-
tice guidelines (The NICE guideline, 2017) underscore how the benefit 
of such interventions varies between autistic individuals. Overall, there 
is not a single scientific statement that applies to all individuals 
composing the current spectrum. 

This shift in diagnostic practices is generally seen as a step towards a 
better understanding of the autism entity, reflecting a spectrum of 
severity and various presentations. However, a more pessimistic inter-
pretation is also possible: our capacity to distinguish between in-
dividuals with and without a diagnosis of autism may have decreased 
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over time due to inclusion criteria that blur the signal of what autism 
actually is. Ultimately, autism is now typically construed as a spectrum 
of individuals whose phenotypic and adaptive characteristics vary 
significantly, which may hinder our capacity to build mechanistic 
models of the condition. Thus far, brain imaging has not significantly 
improved the diagnosis, prognosis, or staging of autistic individuals, 
despite substantial progress in methodologies and research concepts to 
characterize the autistic brain (Abraham et al., 2017; Bzdok et al., 
2020). Similarly, although the genetic contribution to the risk of autism 
is high, genomic findings have not yet been translated into practical 
clinical applications, such as the identification of well delineated sub-
groups or pertinent behavioural dimensions, or into a refined molecular 
genetic architecture (Vorstman et al., 2017). 

The conclusions derived from scientific studies on the nature of 
autism depend on the composition of the group under study, as different 
ways of constructing autism samples may over- and under-sample 
different parts of the autism population that may differ in the charac-
teristics being studied, and results based on one sample may thus not 
generalize to other samples. The lack of reliability of the previous autism 
subcategories (Clarke et al., 2013; Regier et al., 2013) during the DSM-5 
field trial gave way to a spectrum model that permitted the inclusion of 
heterogeneous samples in research. We have argued elsewhere (Mottron 
and Bzdok, 2020) how current diagnostic criteria can result in hetero-
geneity that assumes biological variability. Scientific studies carried out 
on this broader group may have resulted in inconsistent phenotypic and 
mechanistic findings, circularly confirming the heterogeneity of the 
autism spectrum (see (Mottron, 2021b) for further development and 
schema of such a self-amplifying circle). 

The heterogeneity of autism and the reification issue evident in all 
mental health disorders was addressed by the multidimensional biobe-
havioral framework proposed by the Research Domain Criteria Initiative 
(RDoC), with great expectations (National Institute of Mental Health 
(NIMH), 2011). Twelve years after the RDoC matrix was launched, both 
the discovery potential of this strategy and the scientific justification 
behind each dimension and construct of the matrix remain open to 
discussion (Demetriou et al., 2019; Fusar-Poli et al., 2019; Ross and 
Margolis, 2019). Considerable research is still needed to test the power 
of discovery of its starting principle (Clark et al., 2017; Clarkson et al., 
2019) and the exclusion of alternative models seems premature (Joober, 
2013). There is a growing body of research based on DSM-5 spectrum 
diagnoses and using dimensional behavioral traits via instruments such 
as the Social Responsiveness Scale (SRS) (Constantino et al., 2003) and 
the Autism Quotient (Baron-Cohen et al., 2001). However, this line of 
research has not conclusively proven that the condition is essentially a 
continuum of autistic traits nor refuted it. We are interested in alter-
natives to the current dominant approaches being used to address the 
heterogeneity problem in autism research. 

Here, we first review the history of autism diagnosis and subtyping, 
which evolved from the bottom-up recognition of a new prototypical 
condition towards a top-down diagnosis of an autism spectrum disorder 
given via the DSM-5 criteria. We argue that the implementation of DSM 
criteria in the standardized diagnostic instruments and their use for the 
selection of research cohorts have contributed to the observed hetero-
geneity of autism. We then review evidence of autism heterogeneity at 
the phenotypic, neuroimaging, and genetic levels. Finally, we propose 
two research strategies to address the current problems of heterogeneity: 
1) stratifying the existing population into subgroups; and 2) taking an 
alternative path, turning away from very large and diverse databases in 
favour of prototype-based case ascertainment. 

A disclaimer needs to be stated at this point. This article examines the 
strengths and weaknesses of a strategy that has dominated autism 
research for several decades and proposes a new heuristic strategy to 
address a specific research question. Although we may propose changes 
to inclusion criteria within research cohorts, we strongly advocate for a 
care-based system that should be available for everyone based on their 
individual and specific needs, independent of their research diagnosis. 

2. From discovery of autism to research cohorts of autism 
spectrum 

2.1. Reasoning in clinical science 

Modern scientific studies of a psychopathological condition have 
generally followed a similar trajectory, transitioning from a prototype to 
a check-list description (Foucher and Greene, 2010; Vanheule, 2017). 
This section focuses on the balance between reliability and validity and 
maps the historical evolution from the prototype-based DSM-1 to the 
criteria-based DSM-5 for most psychiatric conditions. 

The emergence of a clinically recognisable pattern in an astute cli-
nician’s mind is followed by the description of a prototype by its discov-
erer. A prototype is a representation created from a subjective, implicit 
process of expert observers, accounting for the recognition of a concrete 
or abstract pattern (Smith, 2014). The creation of a prototype occurs by 
mentally averaging frequently encountered exemplars that possess an 
objective resemblance. In the case of a clinical prototype, this process 
can be made explicit and transmissible by a qualitative paragraph 
describing inter-related features in a complete and pure syndrome 
(Westen et al., 2012). It is therefore a bottom-up process (from obser-
vation to identification and labelling), averaging the characteristics 
shared by an emerging clinical pattern: there is no pre-existing relevant 
category before the seminal description of the new category. The clinical 
and scientific community then proposes a standardized description that 
conserves the essence of the initial one, without its subjective or anec-
dotal aspects. This allows the condition to be consistently rated by 
different clinicians, increasing reliability in the initial absence of a 
biomarker or diagnostic test. A later step consists of testing the pheno-
typic and mechanistic homogeneity of the resulting category. If growing 
heterogeneity is found while researching the pathophysiological mech-
anisms of the condition, the biological variability inherent in the cate-
gory should be disentangled from the “epistemic” uncertainty that 
results from an incomplete understanding of the observed phenomenon. 
Autism research is undergoing a process such as that outlined above, 
which will be described in detail in the rest of this article. 

2.2. Early recognition of clinical prototypes 

The clinical pattern of autism symptoms emerged in the minds of 
several clinicians in the first half of the 20th century. Ssucharewa 
(Ssucharewa and Wolff, 1996) and Frankl and Weiss (Robison, 2017) 
detected it but did not influence future classifications. In contrast, 
Kanner’s description of “autistic disturbance of affective contact” (1943) 
and Asperger’s definition of “autistic psychopathy” (1944), with 
partially overlapping clinical patterns, had a major influence on the 
classification systems (Fig. 1, left). The first two clinical descriptions 
were relatively homogeneous, each emerging as a recognizable pattern 
independently of intellectual level. 

Heterogeneity appears to have started to increase when the research 
community attempted to forge an explicit definition that encompassed 
several recognizable prototypes. This began with the suggestion by Wing 
and Gould (Wing, 1981; Wing and Gould, 1979) that Kanner’s and As-
perger’s descriptions could be embedded in the same broad category of 
social abnormalities. Further, merging individual categories into such a 
meta-category had the effect that some individuals who were not 
included in either of the original categories were included in the new 
broader category. Hence, the combination of encountered psychopath-
ological configurations increased heterogeneity, leading to the notion of 
a spectrum. The recent effort to leverage large multi-dimensional 
datasets to stratify the spectrum into subgroups may thus constitute a 
“back to the future” attempt to deconstruct the merging of several 
recognizable clinical patterns into an abstractly defined DSM category. 

The balance between bottom-up recognition of a clinical symptom 
pattern and top-down, checklist-oriented, dimensional-battery measures 
evolved along with the versions of the DSM, up to and including a) 
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abstractly described, b) unrelated, and c) dimensional elementary signs. 
This evolution is classically presented as a simple broadening of criteria, 
reflecting that the same condition has different degrees of penetrance, 
thus applicable to a steadily increasing number of individuals (Happe 
and Frith, 2020). Alternatively, an increasing mismatch between autism, 
as recognised by expert clinicians, and autism, as defined by a list of 
criteria, could have major consequences on autism research. 

2.3. The evolution of a DSM criteria-based standardised description 

Classifications mainly gather signs into recognizable syndromes and 
disorders and fulfill a technical and clinical need. Clinical diagnoses 
meet several criteria, including mechanisms and response to treatment 
(validity) and reliability (e.g. test-retest stability) (Jablensky, 2016). 
These constraints leave open the order in which they should be priori-
tized in the history of science. In psychiatry, in which the underlying 
mechanisms are largely unknown, later DSM versions opted for reli-
ability as a first goal. Although some authors have argued that psychi-
atric diagnostic labels should fit scientific models (Foucher and Greene, 
2010; Ghaemi, 2016), the DSM classification, while having a practical 
use and reasonable reliability, generally does not fit the validity crite-
rion, and does not yet rely upon any mechanistic model or testable hy-
pothesis (Bruckl et al., 2020). This limits its usefulness in a scientific 
context and in the worst case, may prevent scientific progress. 

Historically, psychiatric nosology aimed to fit reliability criteria after 
Spitzer and Fleiss (1974) criticized prototype-based diagnoses and 
advocated for a checklist-based process. Following such a trend, the 
DSM-III (1980) criteria included a category for “infantile autism” 
without a detailed description. Later onset or incomplete presentations 
were separated from the main category. The DSM-III-R (1987) criteria 
added extensive qualitative information, e.g. a rich description of 
autistic language signs, improving its reliability and utility (Rosen et al., 
2021). The DSM-IV (1994) criteria expanded the pervasive develop-
mental disorders (PDD) category to also include a category for Asperger 
Disorder. A gradient of prototypicality was preserved, with autism being 
more specifically described than Asperger Disorder, and Asperger Dis-
order more so than “PDD not otherwise-specified” (PDD-NOS). The 
DSM-IV criteria allowed the subgroups to be studied separately, but 
some results showed the inter-site reliability of PDD subgroups to be 
questionable, particularly the PDD-NOS category (Lord et al., 2012; Lord 

et al., 2012; Walker et al., 2004). It might have been beneficial to have 
conducted a rigorous scientific examination of PDD-NOS to demonstrate 
the common pathophysiological mechanisms with autism before merg-
ing it into a global autism spectrum category for scientific purposes 
(Mandy et al., 2011). Rett syndrome was included in PDD but still 
distinguished from other PDD diagnoses. Other equally “pervasive” 
neurogenetic conditions, with a phenotype partially overlapping that of 
autism (Angelman, William, Prader-Willi, Tuberous Sclerosis, Fragile X) 
were not explicitly included in PDD. 

Planning for the upcoming DSM-5 revision, the contributors pub-
lished a series of suggestions oriented to the research community to 
improve the scientific basis of the classification. In their research 
agenda, the authors noted that the “reification of DSM-IV entities, to the 
point that they are considered to be equivalent to diseases, is more likely 
to obscure than to elucidate research findings”. These authors further 
noted that “research exclusively focused on refining the DSM defined 
syndromes may never be successful in uncovering their underlying ae-
tiologies” (First et al., 2002). Despite warnings of the diminished reli-
ability of spectrum diagnoses relative to core phenotypes and that 
broadened definitions would not necessarily enhance the findings (First 
et al., 2002), the DSM-5 replaced categorical DSM-IV subtypes by a 
single categorical diagnosis, Autism Spectrum Disorder. The DSM-5 
preface states that the diagnosis must be made considering the clinical 
expertise of the acting healthcare professional and that the criteria 
cannot be applied as a check list. However, this precaution does not 
translate to guidelines on how to restrict the application of these criteria. 

The DSM-5 criteria include three socio-communicative signs that are 
all required for diagnosis, which compared to the DSM-IV, in which two 
of four were required, was predicted to increase specificity (M. J. 
(Maenner et al., 2014). Contrary to this prediction, the reported prev-
alence kept increasing (Fig. 2). This increase was associated with large 
variations in autism prevalence estimates and detection methodologies 
among sites, revealing persistent case ascertainment issues (Chiarotti 
and Venerosi, 2020), as systematic community surveys did not confirm 
this increase (Disease et al., 2018). DSM-IV Autistic and Asperger syn-
drome individuals were also merged into a single category, as they were 
poorly discriminated. This decision increased the abstract nature of the 
category, with criteria that can encompass both of these clinical pat-
terns. This was also the case for the PDD-NOS category, which was 
retrospectively included in the new spectrum. 

Fig. 1. Historical steps in the drift of autism from a prototype to a heterogeneous spectrum (left). The autism spectrum “filled the holes” between the original 
descriptions, previously individualized under the names of their discoverers, and thus reified the current continuous dimensional perspective. Addressing the ensuing 
heterogeneity issue may (from top right to bottom right) result in stratifying the initial category into homogeneous subgroups, dissolving it into an indefinite number 
of poorly related mechanisms, or reducing it to a narrower prototype. 
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A century of evolution has considerably broadened how we under-
stand autism and by extension (Malpas and Davidson, 2012), the group 
of individuals that is given the diagnosis. This historical trend can be 
represented as a move toward a higher level in the hierarchical taxon-
omy. In the DSM-IV, autism was, together with Asperger syndrome and 
PDD-NOS, under the PDD category, and at the same level as myriads of 
neurodevelopmental conditions. The transition to a spectrum moved 
autism to a higher level in the taxonomy, encompassing all PDD cate-
gories. Finally, the inclusion of neurogenetic conditions under the 

comorbidity specifier introduced the syndromic fraction into the spec-
trum. This models the apparent gain in reliability between “autism 
spectrum” and the DSM-IV subgroups, the apparent increase in the 
prevalence of the autism spectrum according to DSM-5, and the finding 
of autistic traits in an indefinite number of non-autistic conditions 
(Mottron and Bzdok, 2020). However, it may also model the loss of 
specific information documenting the lower level of the hierarchy, 
including prototypical autism. We have highlighted some of these 
questions, with further details in Table 1. 

Fig. 2. Autism and Autism spectrum prevalence estimates through time and changing classification criteria. Methodologies may vary between studies. Relative 
proportions of autism (blue) and autism spectrum (grey) are colour coded. 1: (Yeargin-Allsopp, 2002); 2: (Gillberg and Wing, 1999); 3: (Bertrand et al., 2001); 4: 
(Tidmarsh and Volkmar, 2003), 5: (Baio et al., 2018). 

Table 1 
Dominant versus alternative cohorts and analyses addressing major autism research questions.  

Research question Dominant practices 
and beliefs 

Instruments and 
Methods 

Existing 
cohorts 

Alternative hypotheses Instruments and 
Methods 

Suitable cohorts 

Are there 
homogeneous 
subgroups in the 
Autism spectrum? 

Autism spectrum 
heterogeneity reflects an 
indefinite variety of 
mechanisms 

*Semi-quantitative or 
quantitative 
instruments 
* Unsupervised 
Subgroup-last 
clustering 

Large, 
untruncated 
“spectrum” 
cohorts 

Prototypical autism is 
homogeneous, 
reflecting a specific 
mechanism distinct 
from its risk factor 

*semi- 
supervised 
Subgroup-first 
strategy 
*case-control, 
maximizing 
differences 

Truncated- 
compartmentalized 
cohorts, crossing 
prototype judgment and 
check-list diagnosis 

Are there autism- 
specific symptoms? 

Independent autistic traits 
are normally distributed 
in the non-clinical 
population and over- 
represented in the non- 
autistic clinical 
population 

Quantitative-trait 
studies in the general 
population and non- 
autistic conditions 

idem Constellations of signs 
form a recognizable 
prototype distinct from 
“autistic traits” 

Qualitative sign 
studies refining 
their autistic 
nature 

idem 

Are there distinct 
neurobiological 
mechanisms for 
syndromic and non- 
syndromic autism? 

Non-syndromic and 
syndromic autism both 
result from large series of 
distinct genetic 
mechanisms 

* Quantitative 
instruments (SRS, 
AQ) 
* Genetic studies on 
large cohorts merging 
clinical and non- 
clinical populations 
* Animal models built 
from identified 
genetic syndromes 

“Mutated” 
cohorts 

Non-syndromic autism 
has a distinct aetiology, 
phenotype and 
trajectory, different 
from that of syndromic 
autism 

*Qualitative 
instruments 
*mutated/non 
mutated 
comparisons 
*Del vs. Dup 
comparisons 

Independent “mutated” 
and “non-mutated” 
cohorts 
Independent 
“prototypical” and “traits” 
cohort  
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We will now examine how the uncertainties in the delineation of the 
autism category translate into research methodologies through the use 
of standardized diagnostic instruments and broad inclusion criteria. 

2.4. Implementing DSM criteria: inclusion of participants in autism 
research 

2.4.1. Diagnostic instruments for autism diagnosis used to include 
participants in research cohorts 

In the absence of a biological gold standard for the diagnosis of 
autism, the validity of diagnostic instruments is measured by comparing 
the diagnostic threshold of the instruments with that of clinical experts. 
When these experts use the DSM-5 criteria for their decision, validity is, 
at best, the correspondence between the two sets of criteria. As one set of 
criteria is constructed to map the other, any decision concerning validity 
is plagued by circularity. 

The gold standard for the inclusion of autistic individuals in research 
studies is an above-cut-off score for the retrospective Autism Diagnostic 
Interview-Revised (ADI-R) (Lord et al., 1994) and Autism Diagnostic 
Observation Schedule (ADOS) (Lord et al., 2000; Lord et al., 2012) 
standardized instruments. These instruments were created approxi-
mately 30 years ago to provide a reliable method to score DSM-III-R and 
later DSM-IV diagnoses for research purposes. ADI-R and ADOS-G pro-
vide semi-standardized contexts, allowing scoring of the presence or 
absence of an autism sign. The sum of scores for a selected series of signs, 
each with an equivalent weight, is compared to two diagnostic thresh-
olds, a higher one for autism and a lower one for autism spectrum in the 
ADOS-G. Similar to studies using quantitative instruments focussed on 
social signs (Constantino, 2011), these instruments provide a continuous 
distribution of autism and autism spectrum signs (Lord et al., 2000). The 
diagnostic “threshold” of the severity score can be reached as a result of 
either “lots of 1 s” or, alternatively, “a few 2 s”. In other words, several 
signs, each low and unreliable by themselves, can be combined to give 
the same autism classification as that given to an individual with few 
clear prototypical signs. 

Although ADOS inter-rater reliability is excellent (Lord et al., 2000), 
its test-retest stability varies from high (Lord et al., 2000) to very low 
throughout development (Bachmann et al., 2018). The specificity of 
ADOS is approximately 80% at preschool age (de Bildt et al., 2009; 
Kamp-Becker et al., 2013; Randall et al., 2018), but may be substantially 
lower in some age groups and settings. Specificity has been shown to 
decrease after preschool age. When ADOS is used in a clinical environ-
ment (Fombonne, 2018; Molloy et al., 2011) and by less specialized 
clinicians (Kamp-Becker et al., 2018), the specificity also decreases in 
the presence of emotional and behavioral issues (Havdahl et al., 2016), 
intellectual disability (Pedersen et al., 2017; Sappok et al., 2013), and 
complex psychiatric conditions in adults (Maddox et al., 2017). These 
limitations are even more evident for the subthreshold “autism spec-
trum” ADOS cut-off (Kamp-Becker et al., 2013), with approximately 
30% of participants misclassified relative to the clinical judgment. 
Despite these limitations, the ADOS scores and DSM criteria are 
currently universally used as the gold standard for inclusion in studies 
and research databases, as we will discuss in the following section. 

2.4.2. Inclusion criteria in autism research 
The databases on which a growing part of autism research is carried 

out no longer distinguish between the potentially different clinical forms 
represented within the autism population. Although the DSM-5 recom-
mends modulating the application of diagnostic criteria by clinical 
experience, no guidelines are provided for such a process. To the best of 
our knowledge, prototypicality has never been used as an inclusion 
criterion in the major existing autism research cohorts, such as the Si-
mons Simplex Collection (SSC), LEAP, ABIDE I and II, the Australian 
Autism Biobank, and Pathways, nor in ad-hoc construed worldwide 
cohorts obtained by merging more limited local samples. The set of 
DSM-IV and DSM-5 criteria and specifiers allows significant variability 

concerning the prototypicality of autism, which is transferred to the 
enrolment process of participants in research databases. 

Examination of the inclusion criteria of the autism databases 
mentioned above shows the three main subgroups defined by the DSM- 
IV (e.g. autistic disorder, PDD-NOS, and Asperger syndrome) to be 
included in the SSC, Pathways, and ABIDE I. The entire autism spectrum 
is included when using the DSM-5 criteria, which is used in ABIDE II. 
Several other databases are recruiting participants on the basis of a 
diagnosis using either DSM-IV or DSM-5 criteria, such as the Australian 
Autism Biobank and the LEAP cohort. It must be noted that some of these 
databases are being created on a longitudinal timeframe (SSC, LEAP), 
which might add complexity to the recruitment criteria (accepting DSM- 
IV or DSM-5 or ICD-10 criteria, for example) and that the inclusion into 
the databases is sometimes executed retrospectively to the phenotypic 
and imaging characterisation of the participants (ABIDE I and II). These 
retrospective methods of recruitment in ABIDE I and II are justified in 
the research community by the need for large databases and the diffi-
culty of developing prospective experimental neuroimaging studies (Di 
Martino et al., 2014). 

Despite assessing participants through the ADOS and/or ADI-R tools, 
meeting the autism threshold is not always mandatory in some data-
bases, such as the SSC (for which meeting the “autism spectrum” sub-
threshold of ADOS-G is sufficient) and ABIDE I and II (for which the final 
inclusion decision is dependent upon the best clinical judgment and/or 
prior medical record documenting the ASD diagnosis, whether the 
“autism” threshold with the ADOS/ADI-R is attained or not). These 
various methodological decisions suggest that current research using 
autism databases is largely based on the idea of a spectrum, consistent 
with the DSM-5. In the following section, we will describe how cogni-
tive, imaging, and genetic studies are hampered by the resulting het-
erogeneity of the populations they study. 

3. Testing the phenotypic and mechanistic homogeneity of the 
autism category 

3.1. Autism heterogeneity in cognitive models 

The studies of cognitive markers of autism experienced a golden age 
at the end of the 20th century. Several cognitive models centered on the 
deficit or the over-functioning of a cognitive function were proposed to 
account for autistic behavioral symptoms: theory of mind (ToM), weak 
central coherence, and enhanced perceptual functioning (EPF). Each 
model produced its share of explanations of social and non-social signs 
and followed the same historical evolution: starting by trying to explain 
common signs in a majority of autistic people, then limiting themselves 
to certain signs in a subgroup of the spectrum. This was the case, for 
example, with ToM cognitive models (Frith and Frith, 2005). A deficit of 
ToM was first proposed as a unifying basis underpinning the collection 
of autistic socio-communicative abnormalities. A second generation of 
studies demonstrated older, more intelligent, and more highly verbal 
autistic people could often pass in ToM (Bowler, 1992) tasks. This is also 
the case for EPF in the visual modality. This type of research showed 
large differences between prototypical autism and neurotypical controls 
(Caron et al., 2006). These cognitive differences, consistent with atyp-
ical functioning in the perceptual expertise regions in brain imaging 
(Hong et al., 2019; Sapey-Triomphe et al., 2019), were only modestly 
reflected in meta-analyses (Van der Hallen et al., 2015). A similar tra-
jectory for EPF occurred in the auditory modality. Superior perception of 
pitch in prototypical autistic individuals (Bonnel et al., 2003; Heaton, 
2003; O’Connor, 2012), became blurred when measured in an autistic 
population with fewer prototypical presentations (Bonnel et al., 2010; 
Eigsti and Fein, 2013; Jones et al., 2009). Such a trend, which is inde-
pendent of sample size, has occurred for many markers of constructs 
relevant to autism (Rodgaard et al., 2019). 
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3.2. Autism heterogeneity in neuroimaging 

By opening a non-invasive window into the structure, function, and 
connectivity in the living brain, at the millimetric and increasingly sub- 
millimetric scale, neuroimaging techniques, such as magnetic resonance 
imaging (MRI), represent a natural choice to identify the biological 
substrates of autism. These measurements also promise to bridge mo-
lecular mechanisms with behavioral symptoms (Bernhardt et al., 2017; 
Lariviere et al., 2019). Furthermore, recent open-access initiatives, such 
as ABIDE (Di Martino et al., 2017; Di Martino et al., 2014), have 
aggregated the neuroimaging data of hundreds of individuals with an 
autism diagnosis (DSM-IV as well as DSM-5, generally idiopathic 
autism) and incorporated matched neurotypical controls across multiple 
sites. In parallel, meta- and mega-analytical efforts, such as the ENIGMA 
initiatives (van Rooij et al., 2018), have provided a solid complementary 
platform to pool large, multi-centric cohorts of individuals with autism 
alongside neurotypical controls. More recently, the advent of 
trans-diagnostic samples, such as the healthy-brain network (HBN) 
(Alexander et al., 2017), offers the analysis of individuals with an autism 
diagnosis vis-à-vis typical non-autistic individuals and those with other 
neurodevelopmental conditions. Furthermore, the EU-Aims initiative 
provides unmatched longitudinal data from individuals with autistic and 
typically developing people (Loth et al., 2017). 

Autism neuroimaging research has traditionally followed conven-
tional case-control designs that compare individuals with a broad autism 
diagnosis to controls (Lombardo et al., 2019; Ecker, 2017; Bernhardt 
et al., 2017 for reviews). At the level of structural brain imaging, these 
studies have generally converged on patterns of cortical thickening in 
individuals with autism relative to controls, affecting largely frontal and 
temporal lobe regions (Bedford et al., 2020; Valk et al., 2015; van Rooij 
et al., 2018). Effect sizes have been small to moderate and the strength of 
the effect is somewhat heterogeneous across sites (Abraham et al., 
2017). Other work has shown cortical thinning or null findings (Haar 
et al., 2016). In addition to the variability in case-control differences, a 
further challenge has been the difficulty to identify structural markers 
that correlate with the severity of the condition when an entire ASD 
population is analyzed (Hong et al., 2018; Valk et al., 2015). Hetero-
geneity in the findings has been recognized and certain studies 
furthermore emphasized that aspects of preprocessing, confounding 
factors, and sample characteristics may influence findings and conclu-
sions (King et al., 2019; Mueller et al., 2012). 

At the level of functional connectivity, numerous studies based on 
resting-state acquisition have indicated that autistic individuals often 
present with a mosaic pattern of reduced connectivity between distrib-
uted cortical regions relative to controls (Di Martino et al., 2014; Hong 
et al., 2019; Mueller et al., 2012), often in both higher-order association 
cortices and lower-order sensory and motor regions. These reductions in 
connectivity in cortical regions sometimes co-occur with patches of 
increased connectivity, for example between cortical and subcortical 
nodes (Cerliani et al., 2015). 

A few studies have explicitly tackled heterogeneity in broadly 
defined autism cohorts, based on both dimensional as well as categorical 
decompositions of structural as well as functional imaging markers. 
These studies overall support the notion that neural substrates are 
indeed heterogenous, and that such efforts could potentially help to 
identify more clinically meaningful subgroups within the larger autism 
‘spectrum’(Buch et al., 2023; Hong et al., 2018, 2020). 

3.3. What genetics has taught us about the heterogeneity and mechanistic 
architecture of autism 

Autism is a highly heritable psychiatric condition (64–91%) (Tick 
et al., 2016). In the early years of DSM-IV, the community of autism 
researchers was divided between those who believed autism to be 
explained by only a few mutations, each forming a homogeneous sub-
group (Rutter, 1999), and those for whom autism was a phenotype of 

multiple conditions, most being genetically determined by a large 
number of inherited mutations (Gillberg and Coleman, 1996). Consis-
tent with this latter model, many well defined and rare developmental 
disorders include autistic features in their presentation. Genetic studies 
have since identified a steadily increasing number of rare and common 
variants associated with a diagnosis of ASD. 

In contrast to neurological conditions, for which there is often a 
correspondence between a clinical diagnosis and a genetic variant (e.g. 
Spinal Muscular Atrophy) (Melki et al., 1990), the genetic architecture 
of autism, and psychiatric conditions in general, has proven to be highly 
complex. Current data have shown that a) most of the heritability is 
driven by common variants (Gaugler et al., 2014), b) common and rare 
variants associated with autism are often associated with other psychi-
atric conditions (Brainstorm et al., 2018), c) rare large effect-size vari-
ants are all associated with a decrease in cognitive abilities (Myers et al., 
2020) and like common variants, most are associated with more than 
one condition and a range of cognitive and behavioral symptoms, d) the 
clinical presentation of syndromic autistic individuals associated with 
rare variants substantially diverges from prototypical autism in most 
(Bishop et al., 2017; Moss and Howlin, 2009), but not all cases, e) the 
contribution to a large proportion of autism risk and severity remains 
unaccounted for (Pohl et al., 2019), and f) the overall risk for autism and 
other conditions (i.e. schizophrenia) appears to be highly redundant and 
distributed across the genome (Boyle et al., 2017; Douard et al., 2021). 

The existence of “subclinical” forms, juxtaposed with the gradient of 
prototypicality found within so-called clinical subgroup presentations, is 
a major argument favoring the concept of an autism spectrum. The notion 
of a broader autistic phenotype (Boddaert et al., 2001), which emerged 
towards the end of the 20th century but suspected by Kanner and 
Asperger, represents a range of social, behavioral, emotional, cognitive, 
and personality atypicality found in the first-degree relatives of an 
autistic individual (See Bailey et al., 1998; Parr and Le Couteur, 2013) 
for historical reviews). Beyond the broad autism phenotype (BAP), a 
range of psychiatric diagnoses have been established in siblings of in-
dividuals with autism. A Finnish prenatal registry (Jokiranta-Olkoniemi 
et al., 2016) showed that 37% of siblings presented a psychiatric diag-
nosis (RR = 2.5). Autism represented the highest risk, but the diagnoses 
covered a broad range of adult and childhood onset conditions, 
including ADHD, tics, conduct disorders, and psychosis, consistent with 
the genetic correlation observed between these conditions and discussed 
above. BAP is, along with the increased familial risk of recurrence and 
twin concordance studies, one of the three pillars demonstrating the role 
of genetics in autism (Tick et al., 2016). 

Common variants have been estimated to account for a major part of 
ASD risk, but robust results have only been published recently due to the 
difficulties of assembling large cohorts (Gaugler et al., 2014; Grove 
et al., 2019). Several genome-wide association studies (GWAS) have 
established the positive genetic correlation between autism, high IQ 
(Rao et al., 2022), and high education attainment (Clarke et al., 2016), 
as well as major depression, schizophrenia, and ADHD. Although these 
correlations are weaker than those between more closely related con-
ditions, such as bipolar disorder and schizophrenia (r = 0.8), such 
commonalities imply that genetic risk factors are shared between ASD 
and other clinical conditions or non-clinical traits (Grove et al., 2019). 

De novo large effect-size copy-number variants (CNVs) and gene- 
disrupting single nucleotide variants (SNV) have been identified in 
10–20% of individuals with autism, as currently defined (Jiang et al., 
2013; Monteiro et al., 2019; Napoli et al., 2018; Sanders et al., 2015; 
Tammimies et al., 2015). They collectively explain less than 5% of the 
overall heritability. The largest autism case-control association studies 
to date formally associated rare variants in 102 genes and 16 CNVs at 13 
genomic loci with autism (Sanders et al., 2019). Many more genomic 
loci are likely to be involved, as suggested by the overall increase in CNV 
burden associated with autism (Abrahams et al., 2013; Krumm et al., 
2015; Marshall et al., 2017; Moreno-De-Luca et al., 2013; Sanders et al., 
2019). Rare variants that affect gene dosage (CNVs and loss-of-function 
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SNVs) invariably decrease IQ and gross motor skills but they neverthe-
less remain associated with autism –as currently defined– even after 
adjusting for their effects on cognitive ability (Douard et al., 2021). That 
is, individuals with autism and an IQ > 85 have more mutations that 
decrease IQ than IQ-matched controls. 

Although there are reasons to be optimistic about the role of genetics 
in autism research and its future role in the understanding of autism 
heterogeneity, several big challenges loom ahead. We have certainly 
gathered sufficiently large cohorts and designed the proper tools, but 
currently, genomic variants only account for a small fraction of autism 
risk. Gene-first studies aiming to understand the effect of genomic var-
iants are lagging behind genomic association studies. Our ability to 
understand the impact of variants on psychiatric symptomatology and 
domains and neurocognitive ability is limited in several ways: the effect 
sizes of common variants are too small to be studied individually and the 
effect on cognitive and behavioral traits remains poorly understood. 
Most studies of large effect-size variants were performed through neu-
rodevelopmental and autism cohorts, which presumably represent a 
significant bias related to the clinical inclusion criteria of these groups. 
Only a few studies have been conducted in unselected populations 
presenting these variants (Huguet et al., 2018). Large-scale genetic-first 
studies combining a variety of ascertainments, including prototypical 
autism, other psychiatric conditions, and general population cohorts, is 
recommended to avoid this potentially circular process. We will now 
present two different approaches that could reduce the heterogeneity in 
autism research. 

4. Redefining the population of interest 

4.1. Top-down stratification of the autism spectrum 

The current level of heterogeneity suggests that the umbrella term of 
the autism spectrum may encompass a collection of several subgroups. If 
this is true, traditional case-control analyses of the entire autism spec-
trum may blur or misinterpret the composite signal originating from the 
subgroups (Easson et al., 2019; Khundrakpam et al., 2017). It is possible 
that such subgroups could be identified from patterns that exist in only a 
part of the autism population. The existing literature contains several 
cases of such patterns. For example, grouping individuals with autism 
based on the presence or absence of speech onset delay results in 
group-level differences for multiple variables, which could be explained 
by speech onset delay being an indicator for separate autism subgroups 
(Mottron and Bzdok, 2020). Similarly, genetic data has provided sug-
gestions for possible autism subgroups. The largest autism GWAS to date 
showed that genetic correlations between autism, IQ, educational 
attainment, and other psychiatric diagnoses varied across four autism 
subgroups: childhood autism, Asperger’s, atypical autism, and other 
PDDs (Grove et al., 2019). Although schizophrenia and major depression 
showed similar genetic correlations with all four subgroups, only higher 
IQ and higher educational attainment showed correlations with autism 
and Asperger’s. On the other hand, neuroticism showed higher corre-
lations with PDD and atypical autism. Approaches comparing genetic 
findings across the autism spectrum have also shown that heritability is 
higher in autism without ID than in autism with ID (Grove et al., 2019), 
which may be due to higher levels of de novo mutations in autistic in-
dividuals with ID. Autism associated with large effect-size rare variants 
and polygenic autism may represent separate subgroups of which the 
reciprocal informative value may therefore be more limited than 
currently accepted, due to their phenotypic and genetic dissimilarities. 

In addition to suggesting autism subtypes based on group-level dif-
ferences in phenotype or observed mechanisms, the current autism 
spectrum could be subdivided using data-driven approaches, such as 
cluster analysis. Cluster analysis is a set of analytical methods that aim to 
divide datasets into smaller subsets or clusters to identify subgroups that 
are more homogenous than the sample as a whole (Tan et al., 2005). 
Methods such as hierarchical clustering (Hong et al., 2018), k-means 

clustering (Easson et al., 2019), normative modelling (Zabihi et al., 
2019), and hybrid latent factor modelling techniques (Kernbach et al., 
2018) have been used in autism research on cognitive, behavioural, and 
symptom severity data, some of them since the 1990s (Eaves et al., 1994; 
Sevin et al., 1995) to better understand the nature of autism heteroge-
neity. Cluster analyses in autism research have mainly included 
phenotypic variables, such as IQ scores (Bitsika et al., 2008), ADI-R data 
(Hu and Steinberg, 2009), and sensory processing data (Lane et al., 
2010). Recent years have furthermore seen novel attempts to identify 
subgroups based on structural and functional neuroimaging features 
(Easson et al., 2019) (for reviews on this topic, see (Hong et al., 2020; 
Lombardo et al., 2019)). Agelink van Rentergem et al. (2021) have 
recently reviewed methodologies used in autism subtyping studies, and 
discuss different approaches to validating the clustering results, 
including replication in independent sample and external validation. 

The number of reported clusters varies widely between previously 
published cluster analyses in autism research (Syriopoulou-Delli and 
Papaefstathiou, 2019) and many studies have not replicated the re-
ported clusters in an independent sample (Wolfers et al., 2019). Only a 
few studies have attempted to externally validate the clusters, e.g. by 
comparing them on variables at a different level (e.g. genetic, structural 
and functional neuroimaging, or cognition and behavior) than those 
used to create the clusters (Wolfers et al., 2019). Almost no studies found 
the autism population to not consist of multiple clusters (Agelink van 
Rentergem et al., 2021), which may in part be explained by the fact that 
commonly used clustering methods do not compare the identified 
clusters to the null hypothesis that there is only a single large cluster 
(Wolfers et al., 2019). Multi-cluster solutions may thus be incorrectly 
favored because clustering algorithms can mistakenly identify random 
variations in the data as evidence of distinct subgroups (a false positive). 
Such methodological challenges may have contributed to the previous 
results not being consistent. 

Even if the above methodological problems are addressed, it is still 
uncertain whether future cluster analyses will identify reliable and 
biologically valid subgroups. The ability to identify such subgroups is 
challenged by the curse of dimensionality. This term describes the phe-
nomenon that the sample size required for accurately estimating a 
multivariate distribution grows exponentially when the number of 
variables increases (Feczko et al., 2019). If a cluster analysis includes 
many variables that are unrelated to the subgroups, the sample size 
necessary to detect the subgroups becomes prohibitively large. There-
fore, cluster analysis algorithms should be performed using variables 
that are selected based on their biological relevance to autism subgroups 
or their correlation with such biologically relevant variables (Feczko 
et al., 2019). This constraint makes it unlikely that new categorical 
autism subgroups can be identified by blindly analysing a vast number of 
diverse variables using cluster analysis. By contrast, decades of autism 
research and clinical work have highlighted phenotypic domains in 
which potential subgroups might differ, including speech onset history 
(Mottron et al., 2014), and the cognitive profiles (Chiang et al., 2014). 

Such knowledge of clinical indicators may allow researchers to select 
variables that reflect subgroup differences (Lai et al., 2013) and thereby 
constrain the analysis to a manageable number of variables. However, 
subgroup differences may exist only during certain developmental pe-
riods (Hatch et al., 2020) or under certain conditions (Jackson et al., 
2018). In this case, and as long as these conditions are unknown, this 
will drastically increase the number of variables that must be considered 
and increase the sample sizes required. Whether cluster analysis can 
successfully identify potential categorical autism subgroups will likely 
depend on whether the subgroups differ for variables that can be easily 
measured and how consistent these differences are throughout devel-
opment and across situational contexts. It is also possible that the ASD 
spectrum, as currently defined, has become so heterogeneous that it 
contains a large number of essentially different groups that cannot be 
disentangled through a cluster-analysis approach. In that case, ASD may 
be best described not by subgroups, but at the individual level (Wolfers 
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et al., 2019). Such diversity might be reduced through careful case se-
lection based on features such as age, sex, IQ, age when autism was 
diagnosed, or behavioural traits (Bedford et al., 2020), or it may require 
a bottom-up redefinition of the phenotype. 

4.2. Bottom-up redefinition of autism 

In addition to the top-down stratification of the autism spectrum, we 
suggest that the current issues concerning heterogeneity could be 
addressed through a bottom-up redefinition of autism. This strategy 
consists of creating a prototypicality measurement based on the expert 
judgment on the frequency at which a similar presentation has been 
previously encountered and considered to be autistic, the speed at which 
autism has been clinically identified, and the exemplarity of the 
encountered individuals for teaching purposes. Whereas diagnostic 
checklists verify the presence or absence of relevant independent be-
haviors, prototypicality rating consists of holistically grading how a 
clinical case matches a prototype (Westen, 2012). Although prototype 
diagnosis has been demonstrated to be equally reliable to criteria-based 
diagnosis for personality disorders (Westen et al., 2010; Zimmerman, 
2011), mood disorders (DeFife et al., 2013), anxiety (Huprich et al., 
2019; Nagar et al., 2018), and eating disorders (Ortigo et al., 2010), only 
limited empirical investigations have been conducted in autism. (de 
Marchena and Miller, 2017) Our proposition for a research program 
allowing to redesign a prototype of autism comprises three stages: 
weighting of a grid of qualitatively defined signs, construction of an 
instrument with weighted signs, and study of the distribution of these 

signs in a sample of autistic children and a pediatric control sample. In 
the first stage, a list of qualitatively defined social and behavioral signs 
(e.g. lateral/obstructed glances (Miller et al., 2021; Mottron et al., 
2007)) will be submitted to experts through a DELPHI methodology. 
This step will result in a list of signs that will be weighted depending on 
their respective contribution to autism diagnostic certainty. In the sec-
ond stage, a clinical algorithm tool whose sum-variable is proto-
typicality, and not severity, will be created from the weighted signs. In 
the third stage, this prototypicality measurement tool will be tested in 
different clinical and non-clinical populations. The tool could then be 
used in the building of research cohorts. 

Limiting the possible divergence from prototypicality in research- 
oriented cohorts represents an alternative, unexplored approach to 
delineate a phenotypic gold standard (Mottron, 2021a). A prototypical 
autism cohort would gather individuals with a high sum-score at the 
prototypicality measurement and who are maximally similar in terms of 
specifier values: language (being non or minimally verbal at least during 
the preschool years), intelligence (average or above average non-verbal 
intelligence), and comorbidity (accepting only comorbid diagnoses that 
are suspected to overlap with a prototypical clinical presentation, such 
as ADHD and speech disorder), sex (same number of males and females 
for each subtype), and age (duplicating each subtype with a preschooler 
and an adult cohort) (Fig. 3). The inclusion of a group without speech 
onset delay (or without speech atypicality, such as delayed echolalia) in 
the definition of autism is likely to be a contributor to the current autism 
spectrum heterogeneity (Hinzen et al., 2019). This type of autism might 
require to be recognized on its own, thus is to be studied separately from 

Fig. 3. Compartment allocation and truncating strategy; separated compartments categorized by clinical subgroups. A compartmentalized strategy comprising a 
cohort enrolled according to the decreasing prototypicality of the participants, truncated at a sufficient sample size. Each participant is enrolled according to a 
decreasing level of similarity to an autistic phenotype. Each compartment represents a plausible subtype defined by a narrow range of specifiers (age, non-verbal 
intelligence, language, comorbidity). SOD+ : presence of speech onset delay; SOD-: absence of speech onset delay; NVID: non-verbal intellectual disability; DUP: 
duplication; DEL: deletion. 
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the other groups. We propose dedicating a cohort compartment to 
autistic individuals without speech onset delay or abnormalities, as 
adolescents or adults, with an equivalent sex ratio. Similarly, a cohort of 
individuals with potentially relevant mutations should be constructed. 
Given the recent demonstration that pleiotropic effects of gene dosage 
largely influence the prototypicality of autistic presentation, individuals 
with deletions and duplications would be separately enrolled by 
decreasing prototypicality and in equal numbers (Douard et al., 2021). 
Finally, the compartment strategy implies inflating the subtypes poorly 
represented in usual recruitment settings to reach sufficient sample sizes 
within each compartment of the cohort. 

In emphasizing the possible existence of a discretely delimited pro-
totype, we do not presume that the external (between autism and non- 
autism) and internal (between autism subgroups) boundaries of 
autism are necessarily discrete. Neither do we presume monocausal 
theories (Kendler, 2019). Maintaining a trend of research on 
clinically-defined prototypical autism and comparing it to other 
clinically-defined subgroups will make it possible to test whether the 
distribution of weighted signs is linear or non-linear. It should also make 
it possible to reconnect with studies on qualitatively distinct signs and 
groups of signs: “the issue is not the inclusion of similar symptoms in 
different diagnoses, but the paucity of research on the differential 
characteristics of those symptoms in different disorders” (Angold et al., 
1999). 

4.3. Limitations of the prototype approach 

The prototype-oriented strategy comes with several limitations. 
First, this research strategy is supported by less empirical work. More-
over, the bottom-up design has opposite strengths and weaknesses 
relative to the top-down design. Namely, although its specificity is ex-
pected to be better, its inter-judge agreement remains to be established. 
Furthermore, the notion of expertise, defined by exposure to a large 
number of individuals corresponding to a certain prototype, may be 
modulated by "clinical-site biases" linked to differences in the reference 
process. As each expert center has its own target population (i.e. chil-
dren with autism, adults with autism, individuals with autism without 
intellectual disability, complex neurodevelopmental disorders, etc.), 
expertise is mainly based on repeated exposition to this specific popu-
lation. Experts may therefore develop divergent prototypes for each 
specific type of neurodevelopmental presentation. The potential benefit 
of this proposed line of research for the large number of individuals 
within the autism spectrum that do not match one of the prototypes may 
be assessed only after the question of generalizability is answered. 

5. Conclusion 

There has been progress in autism research despite existing un-
certainties in the delineation and subtyping of the autism category. 
However, comparisons of behavior, psychiatric comorbidity, brain or-
ganization, and genetic factors between autistic participants and neu-
rotypical controls strongly depend on inclusion criteria in research 
cohorts, which appear to have broadened over time. Several lines of 
evidence suggest that current inclusion criteria result in pervasive het-
erogeneity, which may hinder further discoveries. Attempts to resolve 
the observed heterogeneity by stratifying the autism population into 
more homogeneous subgroups have been published since the 1990’s but 
have thus far not yielded consistent results. We have described a number 
of methodological issues that should be addressed in future stratification 
studies. In parallel to these efforts, an alternative strategy could be 
pursued. We suggest that autism research could benefit from establish-
ing a line of investigation of clinically defined cohorts based on proto-
typicality. Although prototypicality does not necessarily reflect the 
biological boundaries of autism, we propose that rigorously defined 
cohorts emphasising specificity over sensitivity may help reduce the 
problem of heterogeneity in autism research. Although we suggest a 

more central role of prototypicality in research, access to health and 
social services should be guided by individual needs and not be influ-
enced by prototypicality. 
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