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Abstract 

Understanding heterogeneity in neural phenotypes is an important goal on the path to 

precision medicine for autism spectrum disorders (ASD). Age is a critically important variable 

in normal structural brain development and examining structural features with respect to 

age-related norms could help to explain ASD heterogeneity in neural phenotypes. Here we 

examined how cortical thickness (CT) in ASD can be parameterized as an individualized 

metric of deviance relative to typically-developing (TD) age-related norms. Across a large 

sample (n=870 per group) and wide age range (5-40 years), we applied a normative 

modelling approach that provides individualized whole-brain maps of age-related CT 

deviance in ASD. This approach isolates a subgroup of ASD individuals with highly age-

deviant CT. The median prevalence of this ASD subgroup across all brain regions is 7.6%, 

and can reach as high as 10% for some brain regions. Testing age-normed CT scores also 

highlights on-average differentiation, and associations with behavioural symptomatology that 

is separate from insights gleaned from traditional case-control approaches. This work 

showcases a novel individualized approach for understanding ASD heterogeneity that could 

potentially further prioritize work on a subset of individuals with significant cortical 

pathophysiology represented in age-related CT deviance. Rather than cortical thickness 

pathology being widespread characteristic of most ASD patients, only a small subset of ASD 

individuals are actually highly deviant relative to age-norms. These individuals drive a large 

majority of small effect results from canonical case-control comparisons and should be 

prioritized in future research to better understand the mechanisms behind highly deviant CT 

patterns. 
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Introduction 

Autism spectrum disorder (ASD) is a clinical behavioural consensus label we give to a 

diverse collection of patients with social-communication difficulties and pronounced 

repetitive, restricted, and stereotyped behaviours (Lai et al., 2014). Beyond the single label 

of ASD, patients are in fact widely heterogeneous in phenotype, but also with regards to the 

diversity of different aetiologies (Lombardo et al., 2018). Even within mesoscopic levels of 

analysis such as examining brain endophenotypes, heterogeneity is the rule rather than the 

exception (Ecker, 2016). At the level of structural brain variation, neuroimaging studies have 

identified various neuroanatomical features that might help identify individuals with autism or 

reveal elements of a common underlying biology (Ecker, 2016). However, the vast 

neuroimaging literature is also considerably inconsistent, with reports of hypo- or hyper-

connectivity, cortical thinning versus increased grey or white matter, brain overgrowth, 

arrested growth, etc., leaving stunted progress towards understanding mechanisms driving 

cortical pathophysiology in ASD.  

 

Multiple explanations could be behind this inconsistency across the literature. Methodology 

widely differs across studies (e.g., low statistical power, different ways of estimating 

morphology or volume) and is likely a very important factor (Haar et al., 2016; Vissers et al., 

2012). Initiatives such as the Autism Brain Imaging Data Exchange (ABIDE; Di Martino et al., 

2014) have made it possible to significantly boost sample size by pooling together data from 

several different studies. However, within-group heterogeneity in the autism population also 

immediately stands out as another factor obscuring consistency in the literature, particularly 

when the dominant approach of case-control models largely ignores heterogeneity within the 

ASD population. In particular, some autism-related heterogeneity reported in literature might 

be explained by factors such as age (Georgiades et al., 2017; Lord et al., 2015). Indeed, with 

regards to structural brain features of interest for study in ASD (e.g., volume, cortical 

thickness, surface area), these features change markedly over development (Mills et al., 

2016; Raznahan et al., 2011a, 2011b; Smith et al., 2016). However, typical approaches 

towards dealing with age revolve around group statistical modelling of age as the variable of 

interest or removing age as a covariate and then parametrically modelling on-average 

differences between cases versus controls. While these are common approaches in the 

literature, they do not immediately provide individualized estimates of age-related deviance. 

In contrast, normative models of age-related variation may likely be an important alternative 

to these approaches and may mesh better with some conceptual views of deviance in ASD 

as being an extreme of typical population norms (Marquand et al., 2016). In contrast to the 

canonical case-control model, normative age modelling allows for computation of 
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individualized metrics that can hone in on the precision information we are interested in – 

that is, deviance expressed in specific ASD individuals relative to non-ASD norms. Such an 

approach may be a fruitful way forward in isolating individuals whom are ‘statistical outliers’. 

The reasons behind why these individuals are outliers relative to non-ASD norms may be of 

potential clinical and/or mechanistic importance. Indeed, if we are to move forward towards 

stratified psychiatry and precision medicine for ASD (Kapur et al., 2012), we must go beyond 

case-control approaches and employ dimensional approaches that can tell us information 

about which individuals are atypical and how or why they express such atypicality.  

 

In the present study, we employ normative modelling on age-related variability as a means 

to individualize our approach to isolate specific subsets of patients with very different neural 

features. Here we focus specifically on a neural feature of cortical morphology known as 

cortical thickness (CT). CT is a well-studied neuroanatomical feature thought to be 

differentially affected in autism and has received increasing attention in recent years (Jiao et 

al., 2011; Khundrakpam et al., 2017; Moradi et al., 2017; Smith et al., 2016; van Rooij et al., 

2017; Zielinski et al., 2014). Recent work from our group also identified a genetic correlate 

for autism specific CT variation despite considerable heterogeneity in group specific CT in 

children with autism (Romero-Garcia, Warrier, Bullmore, Baron-Cohen, & Bethlehem, in 

press). A study examining ABIDE I cohort data discovered case-control differences in CT, 

albeit very small in effect size (Haar et al., 2014). Similarly, the most recent and largest study 

to date, a mega-analysis combining data from ABIDE and the ENIGMA consortium, also 

indicated very small on-average case-control differences in cortical thickness restricted 

predominantly to areas of frontal and temporal cortices, and indicate very subtle age-related 

between-group differences and substantial within-group age-related variability (van Rooij et 

al., 2017). Overall, these studies emphasize two general points of importance. First, age or 

developmental trajectory is extremely important (Courchesne et al., 2011, 2007; Georgiades 

et al., 2017; Schumann et al., 2010). Second, given the considerable within-group age-

related variability and the presence of a large majority of null and/or very small between-

group effects, rather than attempting to find on-average differences between all cases 

versus all controls, we should shift our focus to capitalize on this dimension of large age-

related variability and isolate autism cases that are at the extremes of this dimension of 

normative variability. 

 

Given our novel approach of age-related normative CT modelling, we first compare the utility 

of age-related normative modelling directly against case-control models. We then describe 

the prevalence of ASD cases that show significant age-related deviance in CT (i.e. > 2 SD 

from age-related norms) and show how a metric of continuous variability in age-related 
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deviance in CT is expressed across the cortex in autism. Finally, we identify age-deviant CT-

behaviour associations and assess whether such dimensional analyses associated with 

behaviour identify similar or different regions than typical case-control analyses. To show 

applicability of this approach we also applied the same method to other measures of 

neuroanatomy; gyrification, volume and surface area. Results and analyses of these metrics 

can be found in the supplementary materials and all code and data used are available on 

GitHub (Bethlehem et al. 2018). 

Methods 

Participants 

In this study, we first sought to leverage large neuroimaging datasets to yield greater 

statistical power for identifying subtle effects. To achieve this, we utilized the ABIDE datasets 

(ABIDE I and II) (see Supplementary Table S1 and S2 for full list of sites used in the current 

analyses). Given that the normalized modelling approach gives us individual level measures 

we chose to also include sites with limited numbers of subjects. Groups were subsequently 

matched on age using the non-parametric nearest neighbour matching procedure 

implemented in the Matchit package in R (https://cran.r-

project.org/web/packages/MatchIt/index.html) (Ho et al., 2007). After matching case and 

control groups and excluding scans of poorer quality (see supplementary materials) we were 

left with a sample size N=870 per group (Table 1 and 2). Because of power limitations in 

past work with small samples, we conducted an a priori statistical power analysis indicating 

that a minimum case-control effect size of d = 0.1752 could be detected at this sample size 

with 80% power at a conservative alpha set to 0.005 (Benjamin et al., 2017). For 

correlational analyses looking at brain-behaviour associations, we examined a subset of 

patients with the data from the SRS (Nautism_male = 421) and ADOS total scores (Nautism_male = 

505). With same power and alpha levels the minimum effect for SRS is r = 0.1765 and r = 

0.1651 for the ADOS. 

 

Table 1: Sample characteristics of Age 

Dx Sex Mean SD N Median 

Autism Male 16.32 9.09 754 13.75 

Autism Female 15.06 8.43 116 12.57 

NT Male 16.64 8.98 660 13.69 

NT Female 13.25 5.33 210 11.09 
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Table 2: Sample characteristics 

Measure Dx Sex Mean SD N Median 

IQ 

Autism Male 106.13 16.51 754 107 

Autism Female 105.88 16.21 116 106.5 

NT Male 111.28 12.13 660 111 

NT Female 112.07 13.21 210 112 

ADOS 

Autism Male 11.15 3.86 505 11 

Autism Female 11.41 3.9 63 11 

Control Male 1.55 1.58 38 1 

Control Female 3 1.05 10 3 

SRS 

Autism Male 80.42 21.41 421 77 

Autism Female 85.95 22.07 61 88 

Control Male 38.43 15.25 337 41 

Control Female 39.93 12.13 120 42 
 

Imaging processing and quantification 

Cortical surface reconstruction was performed using the MPRAGE (T1) image of each 

participant with FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) version (v5.3.0, to ensure 

comparability with previous ABIDE publications). The reconstruction pipeline performed by 

FreeSurfer “recon-all” involved intensity normalization, registration to Talairach space, skull 

stripping WM segmentation, tessellation of the WM boundary, and automatic correction of 

topological defects. Briefly, non-uniformity intensity correction algorithms were applied 

before skull stripping (Ségonne et al., 2004), resulting in resampled isotropic images of 

1mm. An initial segmentation of the white matter tissue was performed to generate a 

tessellated representation of the WM/GM boundary. The resulting surface is deformed 

outwards to the volume that maximize the intensity contrast between GM and cerebrospinal 

fluid, generating the pial surface (Dale et al., 1999). Resulting surfaces were constrained to a 

spherical topology and corrected for geometrical and topological abnormalities. Cortical 

thickness of each vertex was defined as the shortest distance between vertices of the 

GM/WM boundary and the pial surface (Fischl and Dale, 2000). We chose to not conduct 

manual segmentations and excluded failed subjects from any subsequent analysis (and 

these subjects were removed prior to the matching and QC procedures). To assess quality 

of Freesurfer reconstructions we computed the Euler index (Rosen et al., 2018). The Euler 

number is a quantitative index of segmentation quality and has shown high overlap with 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/252593doi: bioRxiv preprint first posted online Jan. 23, 2018; 

http://dx.doi.org/10.1101/252593
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

manual quality control labelling (Rosen et al., 2018). We chose to exclude subjects with a 

Euler index of 300 or higher in either hemisphere (corresponding to approximately the top 

10%) and included the index as a confound variable in all models. 

 

Across both ABIDE I and ABIDE II cortical thickness was extracted for each subject using 

two different parcellations schemes: an approximately equally-sized parcellation of 308 

regions (~500mm2 each parcel) (Bethlehem et al., 2017; Whitaker et al., 2016) and a 

parcellation of 360 regions derived from multi-modal features extracted from the Human 

Connectome Project (HCP) dataset (Glasser et al., 2016). The 308-region parcellation was 

constructed in the FreeSurfer fsaverage template by subdividing the 68 regions defined in 

the Desikan-Killiany atlas (Desikan et al., 2006). Thus, each of the 68 regions was 

sequentially sub-parcellated by a backtracking algorithm into regions of ~500mm2, resulting 

in a high resolution parcellation that preserved the original anatomical boundaries defined in 

the original atlas (Romero-garcia et al., 2012). Surface reconstructions of each individual 

were co-registered to the fsaverage subject. The inverse transformation was used to map 

both parcellation schemes into the native space of each participant.     

Statistical analyses 

There are likely many variables that contribute to variability in CT between individuals and 

across the brain. In order to visually assess the contribution of some prominent sources of 

variance we adopted a visualization framework derived from gene expression analysis 

(http://bioconductor.org/packages/variancePartition) (Hoffman and Schadt, 2016) and 

included the most commonly available covariates in the ABIDE dataset: Age, Sex, 

Diagnosis, Scanner Site, Full-scale IQ, Verbal IQ, Handedness and SRS. Given that ABIDE 

was not designed as an integrated dataset from the outset, it seems plausible that scanner 

site might be related to autism or autism-related variables (e.g., some sites might have 

different case-control ratios or only recruited specific subgroups). Figure 1 shows the ranked 

contribution of those covariates. Perhaps unsurprisingly, scanner site and age proved to be 

the most dominant sources of variance (each explaining on average around 15% of the total 

variance). Our initial conventional analysis was aimed to delineate potential broad case-

control differences, as has been done in previous studies (Haar et al., 2016; van Rooij et al., 

2017). We used a linear mixed effects model with scanner site as random effect. Given the 

potentially strong contribution of age chose to include this as fixed effects covariates in the 

model. Multiple comparison correction was implemented with Benjamini-Hochberg FDR at 

q<0.05 (Benjamini and Hochberg, 1995). 
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Figure 1: Explained variance in cortical thickness for each covariate. 

Age-related normative modelling 

Normative modelling of age-related CT effects was done utilizing data from the typically-

developing group (TD) (see Figure 2 for a schematic overview). We used a local polynomial 

regression fitting procedure (LOESS) (Cleveland et al., 1988), where the local width or 

smoothing kernel of the regression was determined by the model that provided the overall 

smallest sum of squared errors. To align the TD and ASD groups, both were binned into one 

year age bins. For each age bin and every brain region we computed a normative mean and 

standard deviation from the TD group. This was done separately for each sex, given known 

sex differential developmental trajectories. These statistical norms were then used to 

compute a w-score (analogous to a z-score) for every individual with autism. The w-score for 

an individual reflects how far away their CT is from TD norms in units of standard deviation. 

Because w-scores are computed for every brain region, we get a w-score map for each ASD 

participant showing how each brain region for that individual is atypical relative to TD norms. 

Age bins that contained fewer than 2 data-points in the TD group were excluded from 

subsequent analysis as the standard deviations for these bins would essentially be zero (and 

thus the w-score could not be computed).  

 

To assess the reliability of this w-score we bootstrapped the normative sample (1000 

bootstraps, with replacement) and computed 1000 bootstrapped w-scores for each individual 

and each brain region. To subsequently quantify the reliability of the w-score we computed 
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an FDR corrected analogous p-value for each subject by computing the absolute position of 

the real w-score in the distribution of bootstrapped w-scores. The rationale being that if a 

real w-score would be in the top 5% of the bootstrapped distribution it would likely not be a 

reliable score (e.g. the score would be influenced by only a small subset of the normative 

data). The median number of brain regions per subject with a significant p-value was 1 (out 

of 308), indicating that the w-score provides a robust measure of atypicality. More details on 

the bootstrapping procedure are provided in the supplementary material. 

 

Because w-score maps are computed for each individual, we ran hypothesis tests at each 

brain region to identify regions that show on-average non-zero w-scores stratified by sex 

(FDR corrected at q<0.05). To assess the effect of age-related individual outliers on the 

global case-control differences we re-ran the hypotheses tests on w-scores after removing 

region-wise individual outliers (based on a 2SD cut-off). Unfortunately, despite a significant 

female sub-group, the age-wise binning greatly reduced the number of bins with enough 

data-points in the female group. Given the reduced sample size in the female group and the 

known interaction between autism and biological sex (Lai et al., 2015), we conducted 

normative modelling on the male group only. 

 

To assess the distribution in the normative group we also conducted one-sample linear 

mixed effects modelling in the normative group only to determine if any if all brain regions 

would show outlier consistency. There were no brain regions (neither corrected nor 

uncorrected) for which the w-score showed a deviation significant from zero. 
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Figure 2: Schematic overview of normative modelling. In first instance LOESS regression is used to estimate the 
developmental trajectory on CT for every individual brain region to obtain an age specific mean and standard 
deviation. Then we computed median for each one-year age-bin for these mean and median neurotypical 
estimates to align them with the ASD group. Next, for each individual with autism and each brain region the 
normative mean and standard deviation are used to compute a w-score relative to their neurotypical age-bin. 
Contrary to conventional boxplots, the second panel shows mean, 1sd and 2sd for the neurotypical group (in 
yellow) and individuals with an autism diagnosis in purple.  
 

To isolate subsets of individuals with significant age-related CT deviance, we used a cut-off 

score of 2 standard deviations (i.e. w >= 2 or w<=2). This cut-off allows us to isolate specific 

ASD patients with markedly abnormal CT relative to age-norms for each individual brain 

region. We then calculated sample prevalence (percentage of all ASD patients with atypical 

w-scores), in order to describe how frequent such individuals are in the ASD population and 

for each brain region individually. A sample prevalence map can then be computed to show 

the frequency of these patients across each brain region. We also wanted to assess how 
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many patients have markedly atypical w-scores (beyond 2SD) across a majority of brain 

regions. This was achieved by computing an individual global w-score ratio as follows: 

 

�� �  
∑���	
� � 2

∑���	
� � 2
 

 

We also computed global w-score ratios for positive and negative w regions separately. 

Bootstrap analysis 

To assess the reliability of the individual w-scores we also ran a bootstrapping analysis by 

randomly sampling (1000 resamples with replacement) from the normative population and 

recomputing the w-scores. Resulting in 1000 bootstrapped sample for every individual and 

every brain region. To determine reliability, we computed p-values for the real w-scores 

against the bootstrapped w-score. The median number of brain regions per subject that 

differ significantly in the bootstrap analysis was 1. This suggest that the obtained w-score 

was highly consistent across bootstraps. See supplementary materials for more details. 

Exploratory analyses 

In addition to assessing the effect of normative outlier on conventional case-control analyses 

we also conducted some exploratory analysis on the normative w-scores. First, to explore 

whether the w-scores reflect a potentially meaningful phenotypic feature we also computed 

Spearman correlations for each brain region between the most commonly shared phenotypic 

features in ABIDE: ADOS, SRS, SCQ, AQ, FIQ and Age. Resulting p-values matrices were 

corrected for multiple comparisons using Benjamini-Hochberg FDR correction and only 

regions surviving and FDR corrected p-value of p < 0.05 are reported. Details of this 

exploratory analysis are reported in the supplementary materials. 

 

Finally, we explored whether the raw CT values could be used in a multivariate fashion to 

separate groups by diagnosis or illuminate stratification within ASD into subgroups. Here we 

used k-medoid clustering on t-Distributed Stochastic Neighbour Embedding (tSNE) (Maaten, 

2014). Barnes-Hut tSNE was used to construct a 2-dimensional embedding for all parcels in 

order to be able to run k-medoid clustering in a 2D representation and in order to visually 

assess the most likely scenario within the framework suggested by Marquand and 

colleagues (Marquand et al., 2016). Next, we performed partitioning around medoids (PAM), 

estimating the optimum number of clusters using the optimum average silhouette width 
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(Hennig and Liao, 2013). Details of this exploratory analysis are reported in the 

supplementary materials. 

Data and code availability 
Data and code are available on GitHub (Bethlehem et al. 2018; 

http://doi.org10.5281/zenodo.1158023), Cohen’s d were computed using: 

https://github.com/mvlombardo/utils/blob/master/cohens_d.R  

 

Results 

Case-control differences versus age-related normative modelling 

Our first analysis examined conventional case-control differences. As expected from prior 

papers utilizing large-scale datasets for case-control analysis (e.g., (Haar et al., 2016; van 

Rooij et al., 2017)), a small subset of regions (12%, 38/308 regions) pass FDR correction. Of 

these regions, most are of small effect size, with 34 of the detected 38 regions showing an 

effect less than 0.2 standard deviations of difference (Figure 3A). We suspected that such 

small effects could be largely driven by a few ASD patients (Byrge et al., 2015) with highly 

age-deviant CT. Because we also had computed w-scores from our normative age-

modelling approach, we identified specific ‘statistical outlier’ patients for each individual 

region with w-scores > 2 standard deviations from typical norms and excluded them from the 

case-control analysis. This analysis guards against the influence of these extreme outliers, 

and if there are true on-average differences in ASD, the removal of these outlier 

patient*regions should have little effect on our ability to detect case-control differences. 

However, rather than continuing to identify 38 regions with small case-control differences, 

removal of outlier patients now only revealed 16 regions passing FDR correction - a 2.3-fold 

decrease in the number of regions detected. Indeed, the majority of case-control differences 

identifying small on-average effects were primarily driven by this small subset of highly-

deviant patients (Figure 3B). These remaining 16 regions with small on-average effects were 

restricted to areas near posterior cingulate cortex, temporo-parietal cortex and areas of 

visual cortex. 
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Figure 3: Panel A shows effect sizes for regions passing FDR correction for linear mixed effect modelling of 
conventional case control difference analysis. Cohen’s d values represent ASD – Control, thus blue denotes 
ASD<Control and red denotes ASD>Control. Panel B shows effect sizes for regions passing FDR correction after 
outlier removal for the same linear mixed effect modelling of conventional case control difference analysis.  
 

 

In contrast to a canonical case-control model, we computed normative models of age which 

resulted in individualized w-scores that indicate how deviant CT is for an individual 

compared to typical norms for that age. This modelling approach allows for computation of 

w-scores for every region and in every patient, thus resulting in a w-score map that can then 

itself be tested for differences from a null hypothesis of w-score = 0, indicating no significant 

on-average ASD deviance in age-normed CT. These hypothesis tests on normative w-score 

maps revealed no regions surviving FDR correction.  

 

Isolating ASD individuals with significant age-related CT deviance 

While the normative modelling approach can be sensitive to different pathology than 

traditional case-control models, another strength of the approach is the ability to isolate 

individuals expressing highly significant CT-deviance. We operationalized ‘significant’ 

deviance in statistical terms as w-scores greater than 2SD away from TD norms. By applying 

this cut-off, we can then describe what proportion of the ASD population falls into this CT 

subgroup category for each individual brain region. Over all brain regions the median 

prevalence of these patients is around 7.6% (Figure 4). Meaning that in each brain region 

there are approximately 7.6% of individuals that would be considered an outlier. This 
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prevalence estimation is much higher than the expected 4.55% prevalence one would 

expect by chance for greater than 2 standard deviations of difference. The distribution of 

prevalence across brain regions also has a positive tail indicating that for a small number of 

brain regions the prevalence can jump up to more than 10%. Expressed back into sample 

size numbers, if 10% of the ASD population had significant CT abnormalities, with a sample 

size of n=754, this means that n=75 patients possess such significant issues. Underscoring 

the prevalence of these significant cases is important since as shown earlier, it is likely that 

primarily these ‘statistical outlier’ patients drive most of the tiny case-control differences 

observed.  

 

 
Figure 4: Region specific prevalence of atypical w-scores. Panel A shows the by region prevalence of individuals 
with a w-score of greater than +/-2SD. For visualization purposed these images are thresholded at the median 
prevalence of 0.076. Panel B shows the overall distribution of prevalence across all brain regions. 
 

There are other interesting attributes about this subset of brain regions. With regard to age, 

these patients were almost always in the age range of 6-20, and were much less prevalent 

beyond age 20 (S5). The median age of outliers across brain regions ranged from [10.6 – 

20.2] years old, with an overall skewed distribution towards the younger end of the spectrum 

(supplementary Figure S6), showing that CT deviance potentially normalizes with increasing 

age in ASD, though it should be noted that this may partially be explained by the overall 

skewed age distribution in the overall dataset.   

 

Patients with significant CT deviance were also largely those that expressed such deviance 

within specific brain regions and were not primarily subjects with globally deviant CT. To 
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show this we computed a w-score ratio across brain regions that helps us isolate patients 

that show globally atypical CT deviance across most brain regions. The small number of 

patients with a ratio indicating a global difference (ratio > 0.5, n=14) were those that had 

globally thinner cortices. This small subset of individuals was much smaller than the number 

of region-wise ourtiers as shown in Figure 4. Upon visual inspection of the raw data for these 

participants, it is clear that the global thinning effect is not likely a true biological difference 

but rather one likely driven by quality of the raw images, even though the Euler index did not 

indicate failure in reconstruction. Unfortunately, we did not have enough complete 

phenotypic data on these subjects to warrant further in-depth phenotypic analysis. 

Discussion 

In the present study, we find that with a highly-powered dataset, conventional analyses 

reveal small case-control differences in cortical thickness in autism restricted to a small 

subset of regions. In general, this idea about subtle effect sizes for case-control comparisons 

is compatible with other recent papers utilizing partially overlapping data — Haar and 

colleagues utilized only ABIDE I data (Haar et al., 2016), while van Rooji and colleagues 

(van Rooij et al., 2017) utilized both ABIDE I and II dataset combined with further data from 

the ENIGMA consortium. While these statements about small effect sizes are not novel, we 

contribute a novel idea here in our findings that suggest that even these small effect sizes 

may be misleading and over-optimistic. Utilizing normative modelling as a way of identifying 

and removing CT-deviant outlier patients, we find here that most small case-control 

differences are driven by a small subgroup of patients with highly CT-deviance for their age. 

In contrast, we further showed that analysis of CT-normed scores (i.e. w-scores) themselves 

reveals a completely different set of regions that are on-average atypical in ASD. The 

directionality of such differences also reverses in some cases. For instance, Haar and 

colleagues discovered that areas of visual cortex are thicker in ASD compared to TD in 

ABIDE I (Haar et al., 2016). Our case-control analyses here largely mirror that finding. 

However, re-analysis after w-score outlier removal totally removes the effects previously 

reported in visual cortex. Thus, here is a clear case whereby our novel normative age 

modelling approach identifies effects that are likely driven by only a small subset of 

individuals.  

 

The revelation of new insights via normative age modelling, alongside cleaning up 

interpretations behind case-control models, both highlight the significant utility of such a 

novel approach. The presence of small region dependent outlier effects in ASD misleadingly 

drives on-average inferences from case-control models. Thus, it is important for the field to 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/252593doi: bioRxiv preprint first posted online Jan. 23, 2018; 

http://dx.doi.org/10.1101/252593
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

better understand how prevalent this ‘subgroup’ is for a given brain region (i.e. our analyses 

did not reveal a consistent brain region or group of individuals with spatially overlapping 

patterns of extreme w-scores). With our normative modelling approach, we were able to 

quantify the overall prevalence of this CT outlier ‘subgroup’ at a median prevalence of 7.6% 

(meaning that for each brain region there was a median of 7.6% of individuals who had an 

extreme w-score in that region) when taking into account all brain regions – an estimate 

much larger than the expected 4.55% for standard deviations greater than 2. However, there 

is some heterogeneity across brain regions, as a small proportion of brain regions are even 

more enriched in this subgroup and can contain greater than 10% prevalence.  

 

We also noted that this small subgroup showing highly age-atypical CT was predominantly 

restricted to the childhood to early adult age range. In later adult ages, the prevalence of this 

subgroup drops off. This could be a potential indicator that highly atypical CT is more 

prevalent and detectable at earlier ages. It will be important to assess even earlier age 

ranges such as the first years of life (Courchesne et al., 2011), as well as later adult years 

when significant aging processes begin to take effect (Happé and Charlton, 2012). Again, it 

should be noted that this may partially be explained by the overall skewed age distribution in 

the overall dataset. Importantly though, the interpretations behind why this subgroup of 

patients is so atypical also needs to be addressed. Mirroring work in autism genetics, 

whereby discoveries are continually being made regarding very small proportions of the ASD 

population being explained by highly penetrant genetic mechanisms (Geschwind and State, 

2015), it also may be the case that such individuals with highly age-deviant CT are 

individuals with specific highly penetrant biological mechanisms underlying them, and 

possibly related to neurogenesis and other factors that are implicated in CT changes 

(Romero-Garcia et al., 2018). With animal models of highly penetrant genetic mechanisms 

linked to autism, it is notable that such mechanisms have heterogeneous effects on brain 

volume (Ellegood et al., 2014). Thus, it will be important for future work to parse apart 

explanations behind why such a small subset of individuals appear to have such highly age-

deviant CT features. 

 

Finally, there are a number of caveats to consider in the present study. First and foremost, 

the present data are cross-sectional and the normative age modelling approach cannot 

make claims about trajectories at an individual level. With longitudinal data, this normative 

modelling approach could be extended. However, at the moment the classifications of highly 

age-deviant CT individuals are limited to static normative statistics within discrete age-bins 

rather than based on statistics from robust normative trajectories. The dataset also 

represents ASD within an age range that misses very early developmental and also very late 
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adulthood periods. The dataset also presents a post-hoc collection of sites accumulated 

through the ABIDE initiative, whereby scanners, imaging acquisition sequences and 

parameters, sample ascertainment, etc, are highly heterogeneous. As a result, we observed 

that site had a large effect on explaining variance in CT and this is compatible with 

observations made by other studies (Haar et al., 2016). Furthermore, it is likely that there 

may be systematic interactions between scanner site and some variables of interest such as 

age (e.g. different scanning sites will likely have recruited specific age cohorts). Future work 

with more homogenous imaging sequences, scanner hardware, etc, that bolster multi-site 

combination of data is warranted in order to reduce this pronounced site related issue 

(Charman et al., 2017; Loth et al., 2017).  

 

In conclusion, the present study showcases a novel normative age modelling approach in 

ASD and one that can significantly impact the interpretation of conventional case-control 

modelling, but which can also shed significant new insight into heterogeneity in ASD. We 

show that results from case-control analyses, even within large datasets, can be highly 

susceptible to the influence of ‘outlier’ subjects. Removing these outlier subjects from 

analyses can considerably clean up the inferences being made about on-average 

differences that apply to a majority of the ASD population. Rather than only being nuisances 

for standard group-level analyses, these outlier patients are significant in their own light, and 

can be identified with our normative age modelling approach. Normative models may provide 

an alternative to case-control models that test hypotheses at a group-level, by allowing 

additional insight to be made at more individualized levels, and thus help further progress 

towards precision medicine for ASD.  
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