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Abstract. To complement experimental efforts toward understanding human social interactions at both neural and behavioral 

levels, two computational approaches are presented: (1) a fully parameterizable mathematical model of a social partner, the Human 

Dynamic Clamp which, by virtue of experimentally controlled interactions between Virtual Partners and real people, allows for 

emergent behaviors to be studied; and (2) a multiscale neurocomputational model of social coordination that enables exploration 

of social self-organization at all levels—from neuronal patterns to people interacting with each other. These complementary 

frameworks and the cross product of their analysis aim at understanding the fundamental principles governing social behavior.  
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1   Introduction 

In proposing a framework for Computational Social Neuroscience, we are guided by the broader enterprise of Computational 

Neuroscience, an essential line of research to understanding brain and behavior. The complementary approach, empirical science, 

affords only a partial view of the system’s spatiotemporal organization, observed dynamics being restricted to certain domains of 

phase space. The comprehensive organization of the system’s dynamics is concealed, as is the continuity between qualitatively 

distinct states (e.g. normal and pathological regimes; distinct behavioral or cognitive states). Dynamical modeling of the brain 

provides a simplified but more extensive view: it stretches the boundaries of empirical data, exposes continuity between qualitatively 

different regimes, shows the paths leading from one regime to another, and attempts to reveal the entire parameter space--with the 

ultimate goal of discovering fundamental laws governing brain and behavior [1],[2].  

As a branch of neuroscience concerned with the coordination of behavior between individuals, social neuroscience is well 

positioned to benefit from computational approaches. In the following, we outline some unique opportunities that have arisen 

recently. After presenting the theoretical foundations, we review a hybrid framework in which human subjects, by virtue of mutual 

coupling, interact with mathematically-modeled partners in real-time [3]. This framework, called the Virtual Partner [4] or Human 

Dynamic Clamp (HDC) [5], leads to the study of brain and behavior in the human subject, controllable parameters in the virtual 

partner, and coordination dynamics of both (Fig. 1 center). Next, we discuss computational efforts (Fig. 1 right), in which two or 

more people are modeled, in order to shed light on the behavioral and neural underpinnings of social interactions. In a system 

perspective, social coordination can be described by trajectories of state variables drawn from several levels: neural (dynamics of 

neural ensembles measured by, e.g. EEG, MEG, fMRI), behavioral (dynamics of individual behavior) and social (dynamics of 

collective variables) [6]. In such multiscale modeling efforts, surrogate subjects are represented as mathematical models of self-

sustained oscillations describing activity in neural areas and body parts that interact through (e.g. visual) perception of partners’ 

behavior. Finally, we discuss how to articulate meaningfully the efforts of experiments and models to gain a more comprehensive 

understanding of basic social interactions. 
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Fig. 1. Complementarities between experimental and computational social neuroscience. Left panel shows some empirical studies of brain 

and behavior during coordination tasks; right panel illustrates modeling studies of brain and behavior (computational social models) and center 

panel shows the hybrid computational~experimental paradigm of the Human Dynamic Clamp, where real people are set to interact in real time 

with computational models of social partners.  

2   Theoretical Framework and Mathematical Models 

Coordination is a central tenet of Computational Social Neuroscience. While a large number of models of brain and behavior are 

formalized as individual dynamics (e.g. 𝑥) whose trajectories are determined by coupling to other variables (�̇� = 𝑓(𝑥, 𝑦), with 𝑦 

a variable affecting 𝑥), a series of models are explicitly built on quantities that describe, not only the trajectories of parts, but also 

the trajectories of variables describing their coordination (�̇� = 𝑓(𝜙)) with 𝜙 is a variable describing coordination between, say, 

𝑥 and 𝑦, thereby the name, Coordination Dynamics. The Haken-Kelso-Bunz (HKB) model [7] is a system of (nonlinearly) coupled 

nonlinear oscillators that reproduces essential properties of biological coordination (e.g. different forms of phase synchrony, 

instability, phase transitions, etc.) whose empirical study led to the further discovery of a host of complex phenomena such as critical 

slowing down, fluctuation enhancement, hysteresis, etc. (see [8] for recent review). In HKB, symmetry plays a big role in restricting 

dynamical possibilities. A subsequently developed model of coordination, the extended version of HKB [9] broke symmetry, thereby 

acknowledging that oscillators can have different intrinsic dynamics. With this extension, it became possible to handle coordination 

of dissimilar elements taken from a wide range of levels and scales, and at the same time, to achieve a greater realism, since in 

Nature, symmetry is constantly broken. Thus, heterogeneity -a difficulty faced in many computational efforts, especially in systems 

with large number of elements - was returned to scientific reach [10],[11]. The extended HKB model’s broken symmetry led to new 

insight into the phenomenon of metastability which has been proposed as a fundamental principle of brain and behavior 

([1],[10],[12]-[19]). A further step in the development of HKB was to create the mathematical conditions for discrete behaviors to 

arise from the continuous dynamics of the system’s self-sustained oscillators, the so-called 'Excitator' model [20]. Although it seems 

intuitive that continuous behavior is the result of a juxtaposition of discrete actions, nature may go the other way around, using basic 

building blocks with self-sustained dynamics such as central pattern generators to produce discrete behaviors [21],[22]. Further, 

adaptive coordination was developed by making previously fixed parameters of the coordination equations (e.g. intrinsic frequency) 

dynamic and time-dependent, giving rise to an augmented behavioral repertoire in the model [4]. Finally, directed coordination was 

developed to bias the collective behavior toward the “intention” of one of the oscillators, leading it to become a “teacher” to the 

other [4], to the effect that HDC’s human partners could learn new patterns of collective behavior [23]. Over the course of three 

decades, the overall framework of Coordination Dynamics has been built upon an ongoing program of research that blends theory, 

experimental observations, data analysis and modeling. The fact that its predictions have been confirmed at behavioral, neural and 

social levels (e.g. [24]-[27],[4]-[6] for social evidence) renders Coordination Dynamics a viable foundation for computational social 

neuroscience. 

3   The Human Dynamic Clamp (HDC) 

Those models of Coordination Dynamics from (section 2) can be studied as is, but they can also be deployed in experiments. In the 

hybrid experimental~modeling paradigm of the Human Dynamic Clamp, a human and its mathematical mirror, a Virtual Partner, 

are reciprocally coupled via the empirically-verified HKB equations of coordination dynamics [4],[5]. Virtual Partners perceive the 

movement of human partners through sensors, and humans interact with Virtual Partners by viewing the output of the computational 

model in real-time as an animated image on a computer screen. Both the intrinsic dynamics of the Virtual Partner and its coupling 

to the human can be manipulated in real-time. Human and Virtual Partners are provided with coordination tasks to jointly accomplish 

and behavioral coordination is studied as in human-human experiments. Importantly, while affording comparison with real social 

contexts, HDC allows experimental manipulations that are not easily accessible when studying the interaction between humans. For 

instance, it is not straightforward to guarantee a consistent set of parameters sustained by one partner to observe its systematic effect 

on the other, so that parameter space screening is hardly ever achieved in classical experiments of social interaction. In turn, 

incomplete views on parameter space are not fully helpful to guide modeling, and hide experimentally infrequent but important 

examinations of the bifurcations between regimes. It is not easy either to effect a controlled change in some parameters (e.g. suddenly 

decrease coupling strength in a quantifiably precise manner, change intention, etc.), whereas it is very simple to flip a parameter 

from the model during model interactions with humans. HDC has already led to the discovery of novel coordination behaviors and 

behavioral transitions not seen before in standard paradigms, presumably because it allows broader expanses of parameter space to 

be explored and manipulated [4]. Starting from equations for Virtual Partners’ rhythmic motion of a single body part at a single 

frequency, and varying the model equations according to the successive models mentioned in section 2, it was possible to put the 

Human Dynamic Clamp on a path to ever more complex social behaviors [5]. In the principled design of HDC, each new task 

context does not constitute an independent implementation of a single target behavior. Rather, HDC builds human behavior from 

its more primitive foundations with the explicit idea of developing multi-functionality as an emergent property. By constructing 

each new mathematical model as a generalization of a previous version, a more complete behavioral repertoire is possible foretelling, 

perhaps, a future when the Human Dynamic Clamp will be able to deal with any arbitrary human behavior.  



4   Multilevel and Multiscale Modeling of Social Coordination 

 

Fig. 2. Neurocomputational Model of Social Interactions. Coupling between individuals is mediated by the behavior (center panel in mauve): 

observed motion of participant A entering B’s brain via perception (visual, auditory, haptic, etc.) and vice-versa (i.e. we do not know of solid 

experimental evidence showing that brainwaves of one participant have a direct effect on another’s, sans mediation by behavioral exchange). 

Therefore, any model of the coupling between individuals has to be mediated by behavior. As a result, a theoretical model will have (e.g. two) 

brains, two or more behavioral effectors (e.g. moving fingers for a most elementary model, or vocal tracts, endocrine components, facial muscles, 

etc.) and in joint tasks with symmetry, a useful collective variable describing behavioral coordination. This order parameter at the behavioral level 

is deemed to function as a control parameter on brain dynamics. Left panel illustrates experimentally observed dynamics of brains (top), individual 

behaviors (middle) and behavioral coordination variable (bottom). Right panel illustrates some exemplary neurocomputational models of dyadic 

brain dynamics with, e.g. Kuramoto equations embedded in realistic connectomes (Cintra), scalable for coupling strength Wij (top, after [28], see 

also, e.g. [29],[30] for other possible models), modeling of individual behavior (middle) and behavioral coordination variable (bottom), with (e.g. 

HKB) models of behavioral coordination. Such neurocomputational models of social behavior can be used in two ways: to clamp brain areas (e.g. 

for an oscillation at the sources of phi complex, a neuromarker of social coordination) and see effect on coordination behavior; or alternatively, to 

clamp coordination behavior (e.g. impose a pattern of behavioral coordination: metastable, stable locking inphase or antiphase, or some behavioral 

transitions) and observe how the brain reorganizes itself under those controlled circumstances. Furthermore, a similarly designed 

neurocomputational model can also be incorporated in the Human Dynamic Clamp (see Fig. 1 central panel) to test some hypotheses on the 

relationship between brain and behavior during live social interactions.  

Integrating multiple levels of description into a single dynamical account is a longstanding feature of Coordination Dynamics 

[2],[6],[10],[27]. Fully neurocomputational models of social behavior require at least three levels: the neural (brain dynamics), the 

behavioral (dynamics of body parts, e.g. hands or finger movement) and the social (dynamics of the behavioral coordination by 

people engaged in joint tasks). That is, there are systems of equations for two or more interacting people that describe what their 

brains are doing, what their body parts are doing, and how those body parts are coordinated (Fig 2, right). Early work connected 

two levels, the behavioral and the social [5], while leaving the neural scale implicit (though the neural level is profoundly entwined 

in the mathematical description of social coordination behavior, it did not receive its own distinct equations). The neural level was 

explicitly integrated in [28] in a model that related the dynamics of social behavior with neural dynamics in a realistic architecture 

of brain areas (including interbrain structural symmetries). Realism was achieved by fingerprinting actual human brains: neural 

areas were obtained by anatomical brain atlas and connections from diffusion tensor imaging. Brain areas were mapped as neural 

masses to self-sustained oscillators coupled non-linearly with their phases. The coupling was neural within brain and informational 

between brains. Results assessed how the anatomical connectivity of the human brain enhances similarities of the neural dynamics 

and facilitates the creation of sensorimotor coupling between individuals [28]. 
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Each of the three aforementioned levels might organize themselves at multiple spatiotemporal scales, for instance, spatially, the 

nervous system is known to organize at micro-, meso-, and macro-scales. A forthcoming step is to expand the spatial scales of the 

Dumas et al. [29] model nervous system, with the addition of spatial scales at microscopic and mesoscopic levels as e.g., in [29],[31]. 

The social “Model-of-Models” will then be set to interact, simulating tasks by manipulating relevant inter-subject couplings between 

(oculo-) motor, perceptual and emotional brain areas. The model leads to two investigative lines: (1) how a “clamped” coordination 

behavior pattern explains multiscale neural dynamics (local oscillations or neuromarkers, network activity within and between 

brains, to be compared to empirical evidence [24],[32]); and (2) how empirically-motivated neural activity patterns (neuromarkers 

of social behavior, clamped) originate various forms of social interactions. As before, the partners’ degree of similarity can be fully 

controlled, e.g. with pairs of people composed of ‘virtual twins’ or with pairs whose connectomes have greater differentiation. Such 

a research program will allow to explore countless developmental, clinical and functional questions such as infant~adult, 

patient~therapist, expert~novice interactions.  



5 Interplay with Experimental Approaches and Concluding Remarks 

Computational approaches are powerful scientific tools, yet they are only as valuable as they are capable of two-way conversation 

with experimental approaches. In the preceding, we illustrated how empirical data inform the design of adequate computational 

models, built from meaningful variables to explain key phenomena [3]. In return, models point to yet-undiscovered phenomena for 

empirical approaches to confirm or not. The Human Dynamic Clamp is a major upgrade in throughput for this two-way real-time 

conversation providing direct knowledge of parameter ranges under investigation. Another notable advantage of models lies with 

their ability to relate multiple organizational levels and multiple spatiotemporal scales. For instance, with respect to temporal scales, 

models are not only essential but in some cases may be the only methods we have. Already there are hints that social behavior has 

relevant manifestations at slower time scales (e.g. mood changes that may span months to years, particularly salient in pathology). 

Yet, experimental windows typically exclude continuous study of phenomena that exist on longer time scales. Coordination 

Dynamics predicts that the slower dynamics springs from and couples with faster time scales, a prediction that can be verified in 

models. Similarly, since no human brain imaging method currently transcends all spatial levels of description [33], models have an 

important role to play in bridging the gaps between the micro- and the macro-scale of neural dynamics. These are key challenges 

for the theoretically-grounded framework of Computational Social Neuroscience outlined in this overview.  
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