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1 The Human Dynamic Clamp: A Probe
2 for Coordination Across Neural,
3 Behavioral, and Social Scales

4 Guillaume Dumas, Aline Lefebvre, Mengsen Zhang,
5 Emmanuelle Tognoli and J.A. Scott Kelso

6 1 Introduction

7 Social neuroscience seeks to bridge the gap between the neural, the behavioral and
8 the social. Such an agenda contrasts with cognitive science and the shortcoming of
9 its brain-centered and individualistic approach to the mind. Recently, several

10 approaches have proposed to go beyond a third person representational account of
11 others by investigating social interaction from developmental, dynamical and
12 relational viewpoints. This departure from a strictly reductionist view calls for new
13 manners of empirical investigation along with a theoretical account of their various
14 scales of organization. With those advances, one aims to integrate complementary
15 aspects of the problem of social coordination into a coherent, comprehensive and
16 parsimonious whole. In this respect, non-linear dynamical systems theory has

G. Dumas (✉) ⋅ A. Lefebvre
Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
e-mail: guillaume.dumas@pasteur.fr

G. Dumas ⋅ A. Lefebvre
CNRS, UMR3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France

G. Dumas ⋅ A. Lefebvre
University Paris Diderot, Sorbonne Paris Cité, Human Genetics
and Cognitive Functions, Paris, France

G. Dumas ⋅ M. Zhang ⋅ E. Tognoli ⋅ J.A. Scott Kelso
Center for Complex Systems and Brain Sciences,
Florida Atlantic University, Boca Raton, FL, USA

A. Lefebvre
Department of Child and Adolescent Psychiatry,
Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Paris, France

J.A. Scott Kelso
Intelligent System Research Centre, Ulster University,
Derry Londonderry, Northern Ireland

Layout: T1 Standard STIX Book ID: 370920_1_En Book ISBN: 978-3-319-64333-5

Chapter No.: 24 Date: 25-7-2017 Time: 6:14 pm Page: 1/16

© Springer International Publishing AG 2018
S.C. Müller et al. (eds.), Complexity and Synergetics,
DOI 10.1007/978-3-319-64334-2_24

1

A
u

t
h

o
r
 
P

r
o

o
f



UN
CO

RR
EC

TE
D
PR

O
O
F

17 already proved a good formalism to relate biological, psychological and more
18 recently social levels [47]. This paper discusses a new experimental paradigm
19 grounded in the framework of Coordination Dynamics [42, 43, 50]. We describe the
20 development of Virtual Partner Interaction (VPI), a system allowing to couple a
21 human with a theoretical model of movement coordination in real time [13, 45]. We
22 review its generalization into the “Human Dynamic Clamp” (HDC), a new para-
23 digm for Cognitive Science to study the multiple scales of coordination that govern
24 human brain and behavior.
25 This novel paradigm pursues an already ongoing grip of Cognitive Science
26 toward multiscale coordination [6, 43, 47]. In the exemplary case of hand move-
27 ments for instance, social interactions span multiple scales in time: from position,
28 phase and frequency of movements to the turn-taking between people (e.g. [71]).
29 Such social interaction also gives rise to neural coordination within and across
30 brains [15, 67, 90]. Multiple scales are also present in space, from the processing of
31 information at synaptic levels to the level of large neural assemblies giving rise to
32 different rhythms [7]. Moreover, neurophysiology shows how these two dimensions
33 are intertwined: neural oscillations at large time-scales (i.e. low frequencies) tend to
34 cover larger scales in space, whereas shorter time-scales (i.e. high frequencies)
35 appear to be more localized [88]. Thus, both brain and behavior are meshed
36 together across multiple scales of time and space.
37 Since the present scientific approach aims to combine experimental studies with
38 theoretical models, the key challenge is to connect these observations across scales
39 and levels of organization within a coherent theoretical framework [64]. Coordi-
40 nation dynamics aims at such understanding through the synergetic concepts of
41 self-organization [28] and the mathematical tools of dynamical systems theory [24,
42 43, 84]. It seeks both general principles and functionally-specific mechanisms of
43 coordination [42] and aims at connecting multiple scales by emphasizing reciprocal
44 coupling between levels, upward and downward [47]. In this perspective, coordi-
45 nation between humans represents an operational playground for experimental
46 investigation at the crossroad of the neural, the behavioral and the social.
47 Recently, hyperscanning techniques have delivered access to the simultaneous
48 recording of brain activity from interacting people and thus to the study of brain and
49 behavior coordination at both intra- and inter-individual scales [2, 14, 33, 55, 66,
50 90]. In doing so, this technique has also reintroduced real social interaction into
51 laboratory studies of human behavior, a key feature that was oddly lacking from
52 earlier work within a (cognitively-inspired) social neuroscience, as it resorted to
53 exposing one subject to social “stimuli” rather than examining interactions [12, 30,
54 31, 81]. Further, the use of reciprocal paradigms and a real second-person approach
55 of social cognition do not necessarily require the presence of two or more subjects
56 in the experimental task [81]. Instead, one of the interacting partners can be sub-
57 stituted with a virtual agent whose design sustains bi-directional coupling between
58 real and simulated partners [45, 63, 73].
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59 2 Human-Machine Interaction as a Research Tool

60 Meanwhile, in other areas of science and engineering, a plethora of studies was
61 concentrating on subjective perception of artificial agents by humans, with the goal
62 of designing realistic avatars for potential applications to, e.g. video games, cinema,
63 or eLearning assistants [83] to name just a few. In this line of research, the exercise
64 was to mimic facets of human behavior rather than to model foundational neu-
65 robehavioral mechanisms. Interestingly, participants’ beliefs of realism were
66 influenced by emotionally and behaviorally contingent responses made by the
67 artificial agent [68]; see also [92]; this finding hints at the importance of reciprocal
68 coupling with the human.
69 The development of realistic artificial agents extended the toolset available to
70 social psychological research [82], with more to come as those agents are embedded
71 in virtual realities that are increasingly indistinguishable from “normal” reality. The
72 breakthrough of virtualization has reconciled ecological validity and experimental
73 control, e.g. in the study of visual perception, spatial cognition and social inter-
74 action [13, 62].
75 A first level of social interaction is the mere presence of someone else [65].
76 Regarding this issue, virtual reality fits particularly well since it creates a sense of
77 presence through mediated environments carrying dynamic animations of virtual
78 characters [80]. Virtual characters are readily perceived as social agents and are thus
79 capable of exerting social influence on humans [4]. Those virtual characters with
80 strong similarity to real human interactions [26] can easily and valuably be com-
81 bined with neuroimaging recording [82].
82 Human-machine interaction was also used to investigate motor coordination: for
83 instance a finger tapping study by Repp and Keller [75] used a simple linear phase
84 correction model to drive a virtual agent. It showed that subjects’ behavior was
85 systematically modulated by the computational parameters governing that agent.
86 Reframed in a functional neuroimaging study by Fairhurst et al. [18], the same
87 paradigm uncovered some neural basis for motor synchronization and more
88 importantly, for the socio-emotional consequences of different degrees of entrain-
89 ment success.
90 In the following, we describe another paradigm, the Human Dynamic Clamp
91 (HDC), that embraces a continuous, multiscale and non-linear coupling between a
92 human and a machine. By departing from information processing approaches and
93 design-oriented modeling, the HDC offers: (a) a new way to bridge the gap between
94 theory, experiment and models; and (b) an integrative solution to linking neural,
95 behavioral, and social dynamics. HDC puts well established equations of human
96 coordination dynamics into the machine and studies real-time interactions between
97 human and virtual partners. This opens up the possibility to explore and understand
98 a wide variety of interactions [13, 45, 57]. Ultimately, HDC may prove useful to
99 establishing a much friendlier union of man and machine, based on sound inter-

100 actional design, and perhaps it will even lead to the creation of a different kind of
101 machine altogether.
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102 3 A Principle Based Virtual Partner

103 The study of movement coordination is at the core of coordination dynamics and
104 for the last 30-odd years the catchy phrase “let your fingers do the walking” has
105 opened a rich experimental window into human behavior at both intra-individual
106 and inter-individual levels. In a first move, it is important to clarify what we are
107 looking at [47]. What is the behavior? What are the relevant variables and control
108 parameters? These fundamental issues are addressed by uncovering qualitative
109 changes in collective variables from the system called order parameters [28, 41].
110 Qualitative changes appear in two main flavors within the formalism of dynamical
111 system theory: phase transitions and bifurcations. Although they are both revealed
112 in the phenomenon of transition in collective dynamics, the first is related to the
113 switch between potential modes of behavior accessible to the system, and the
114 second concerns global changes of the system’s behavioral landscape. The land-
115 scape is usually described with a manifold in phase space (the frame of reference
116 representing the relationship between variables associated with each degree of
117 freedom). The challenge then is to uncover the most parsimonious model that can
118 exhibit these qualitative changes, and fit its parameters according to the experi-
119 mental data (see the discussion of Phenomenological Synergetics in [52]. One key
120 issue to keep in mind lies with the biological constraints that make it possible to
121 link a model to actual physiological mechanisms. In this perspective, it is funda-
122 mental to recognize that all models are false by definition. However, dynamical
123 system theory offers good candidates for a universal class of models, giving the
124 needed parsimony for elegant theory [27, 91].
125 Born from this aim was our recently developed Human Dynamic Clamp, a
126 paradigm that took inspiration from the electrophysiological dynamic clamp [74,
127 85] to allow real-time interaction between a human subject and a computational
128 model. Using empirically-grounded models not only validated reciprocal and fully
129 dynamical design protocols for experimenters to use, but also provided the
130 opportunity to explore parameter ranges and perturbations that were out of reach of
131 traditional experimental designs with live interactions. The symmetry between the
132 human and the machine and the fact that they carry the same laws of coordination
133 dynamics were keys to our approach [45]. The design of the virtual partner
134 (VP) was grounded in the equations of motion for the coordination of the human
135 neurobehavioral system. These laws were obtained from accumulated studies over
136 the last 30-odd years to describe how parts of the human body and brain
137 self-organize, and to address the issue of self-reference, a condition leading to
138 complexity.
139 The first version of the Human Dynamic Clamp called Virtual Partner Interac-
140 tion [45] embodied the Haken–Kelso–Bunz (HKB) model [29]. The original form
141 of HKB describes and predicts the coordination dynamics of two rhythmically
142 moving fingers, with its characteristically complex phenomena such as multista-
143 bility, phase transitions, hysteresis, critical slowing-down and fluctuation
144 enhancement ([52, 84] for reviews). Since then, the model has also been
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145 successfully validated experimentally for the coordination between different limbs
146 (e.g. [50]), between people (e.g. [70]) and even between species [60], within uni-
147 modal and multimodal contexts [59]. It has been supported by empirical evidence
148 ranging from brain dynamics within [44, 48] and between brain areas [5, 38, 88,
149 89], to coordination with external stimuli [46] and neural counterparts thereof [39,
150 69]. This universal characteristic supports HKB as an ideal candidate for the Human
151 Dynamic Clamp.
152 In its original implementation, the VPI system was composed of a goniometer
153 continuously digitizing the finger position of a human participant; a computational
154 circuit simulating the HKB model; and a screen rendering the virtual partner’s
155 behavior (see Fig. 1a–b). The computational circuit calculates the position of VP
156 continuously according to the differential equations of HKB (Fig. 1b), and the
157 resulting dynamics is mapped onto a virtual avatar displayed on the screen.
158 The HKB model at the collective level describes the equation of motion of the
159 relative phase, a variable that distils the coordination of two oscillatory components.
160 In this form, the HKB model reads:
161

ϕ= a sinϕ+ b sin 2ϕ, ð1Þ
163163

Fig. 1 The VPI system. a presents it key components (goniometer to transduce human movement
behavior and screen to display Virtual partner’s behavior) from the human viewpoint. Task and
coupling are outlined in (b). Human’s behavior is digitized and fed into a computer whose
software computes the corresponding position of the VP in real time, following a theoretical model
of behavioral coordination—here HKB. The picture of the VP is updated on the screen
(a) according to the output of the model. Data are stored for further study (c) to test hypotheses
about the relationship between the agent’s properties, coupling parameters and emergent collective
behavior
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164 where ϕ is the relative phase between human and VP’s finger position, and a and b
165 are constants (for more details, see [25]).
166 However, since computers do not have direct access to the relative phase, the
167 internal dynamics of VP is governed by the HKB model at the component level (see
168 Fig. 1b). In this form, two non-linearly coupled non-linear oscillators represent the
169 interaction between the two fingers. The collective form in Eq. (1) can be derived
170 from the equations at the component level (Fig. 1b). At the component level,
171 variables are no longer the relative phase but the individual finger positions (and
172 velocities by derivation). x and y represent VP’s and human’s finger positions, α, β
173 and γ are constants associated with the intrinsic dynamics of VP, ω is VP’s pul-
174 sation (frequency), A and B are constants associated with the coupling from VP to
175 human, and finally μ is a constant fixed to either +1 or −1, indicating VP’s pref-
176 erence for in-phase or anti-phase coordination.
177 In the original study [45], VP and human behaviors were chosen to be quite
178 simple. Both partners were tasked to coordinate finger movements with one
179 another, the human with the intention of achieving in-phase coordination with the
180 VP (trying to synchronize his/her flexion and extension movements with VP’s). On
181 the VP side, the parameter μ was set to −1, inducing a VP preference for anti-phase
182 coordination and thus a goal opposite to human’s. Subjects were instructed to
183 maintain a smooth and continuous rhythmic movement with their right index finger
184 (flexion-extension) and to avoid stopping their movement at any time. Visual
185 coupling was experimentally manipulated: from unidirectional in two conditions
186 (VP “perceives” human movement but human does not perceive VP’s behavior; or
187 reciprocally), to bi-directional in another (both VP and human have access to each
188 other’s finger movement). VPI accommodated the whole set of behavioral coor-
189 dination modes described by the HKB model. For instance, when VP and human
190 participants did not have the same preferred movement frequency, their relative
191 phase conformed to predictions by the extended version of HKB [46] and exhibited
192 phase wrapping (not shown) or metastability (see Fig. 1c). Pitting machine against
193 human through opposing task demands is a way to enhance the formation of
194 emergent behavior, and also allowed us to examine each partner’s individual
195 contribution to the collective behavior. An intriguing outcome of the experiments
196 was that subjects ascribed intentions to the machine, reporting that it was “messing”
197 with them. A later study further suggested that VP elicits emotional experiences in
198 human: subjects’ emotional arousal was greatest when VP interactions were (fal-
199 sely) deemed to be with a human rather than with a machine [92].
200 In summary, Kelso et al. [45] initial VPI experiment demonstrated the feasibility
201 of the Human Dynamic Clamp in the context of the continuous coordination of
202 rhythmic movements. It uncovered unexpected behaviors, which were theoretically
203 tested afterward. In the following, we show how to explore a new set of behaviors
204 with other theoretical models of human behavior.

6 G. Dumas et al.
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205 4 Expanding the Behavioral Repertoire

206 Embedding the HKB model in a Virtual Partner demonstrated that the explicit use
207 of non-linear relational dynamics in an experimental paradigm can lead to new
208 observations of emergent phenomena that linear models may miss out on. The
209 Human Dynamic Clamp paradigm is about developing this idea by integrating other
210 principle-based models grounded on canonical behaviors observed in experimental
211 work. More complex behaviors can then be approached through the combination of
212 canonical models in a modular and hierarchical manner [13, 36], see also Fig. 2.

213 4.1 Discrete Behavior: Phase-Space Sculpture

214 Although it is undeniable that living organisms rely both on rhythmic and discrete
215 behaviors, the field of motor control has traditionally studied them separately.

Fig. 2 Examples of interactions between a human participant (red) and a VP embedding
alternative models of relational dynamics (blue). a The Excitator model (with parameters
a = 0; b = 0;A=1; B= − 0.2; τ=1;ω=1; dashed line indicates switch from discrete to rhythmic
movement in the human participant); b the adaptive Excitator model
(a = 0; b= 0;A=1; B= − 0.2; τ=1;ω=1;K=1Þ; c a modified HKB with an intended relative
phase of pi/2 (a = 0.641; b = 0.00709; A=0.12; B= 0.025; C= 1;ω=1; dashed line indicates
release of the VPI intentional forcing, i.e. switch to normal HKB model)

The Human Dynamic Clamp: A Probe for Coordination … 7
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216 This led to two different ways of theoretically approaching and modeling them.
217 While rhythmic movements have been extensively studied through the prism of
218 dynamical systems, discrete movements’ modeling has focused on equilibrium
219 points or control signals [9]. Unifying rhythmic and discrete movements is often
220 posed to be a key theoretical challenge in behavioral science [10, 37]. However,
221 there is no specific need to invoke two separate mechanisms for discrete and
222 rhythmic behavior [35, 49, 58]. For instance, Schöner (1990) extended the HKB
223 model to the case of discrete bistable coordination by changing the intrinsic
224 dynamics. Sternad et al. (2000) proposed another model for unimanual coordination
225 with two mutually inhibiting subsystems, each of which handled the discrete and
226 the continuous cases respectively.
227 Along similar lines, Jirsa and Kelso [40] modeled discrete and rhythmic
228 movement based on the phase flow topology of the so-called “Excitator” model (see
229 also [37]). The Excitator defines a universal class of two-dimensional dynamical
230 systems able to exhibit limit cycles for rhythmic movement, and fixed point
231 dynamics for discrete movement. This model is based on topological considerations
232 and is a parsimonious way to handle discrete and continuous behaviors simulta-
233 neously. Furthermore, in line with the approach of HKB modeling, the Excitator
234 provides predictions regarding false-start phenomena that have been confirmed
235 experimentally [19]. Finally, it is a biologically realistic model since it follows the
236 self-excitable property that the FitzHugh-Nagumo model drew from single neurons
237 [20].
238 The structure of the model contains three characteristics related to topological
239 constraints: boundedness of the trajectory, existence of a separatrix marking the
240 boundary between two separate regimes in phase space, and existence of a limit
241 cycle for rhythmic movements and of one or two stable fixed point(s) for monos-
242 table and bi-stable discrete movements respectively.
243

The equations read as follows: x1
⋅
=ω x1 + x2 − g1 x1ð Þð Þτ

x2
⋅
= −ω x1 − a+ g2 x1, x2ð Þ− Ið Þ ̸τ,

!
ð2Þ

245245

246 where x1 and x2 are internal variables of the oscillator, ω is the pulsation (fre-
247 quency) of VP, a the term controlling the position of the separatrix, b the term
248 controlling the angle of the separatrix, I an instantaneous external input, and τ the
249 time constant of the system.
250 Note that the choice of g1 and g2 is not fixed but must nevertheless guarantee the
251 boundedness of the system so that the system belongs to the class of self-excitable
252 systems. Here we take
253

g1 x1ð Þ= 1
3
x31 and g2 x1, x2ð Þ= − bx2 ð3Þ

255255

256 When this is put in unidimensional form, we retain the same coupling terms as
257 HKB model’s. The coupling causes either convergence or divergence of the tra-
258 jectories in phase space depending on initial conditions. Since trajectories are

AQ1
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259 bounded, constraints lead to in-phase or anti-phase modes of coordination (for more
260 details, see [40]).
261 Implementation of the Excitator dynamics in an HDC is quite straightforward:
262 one only needs to substitute the relevant equations Eq. (2) in the software con-
263 trolling VP’s behavior. Note that these equations introduce a new term of impor-
264 tance: parameter I allows to modify the phase flow according to an external input.
265 An external input can originate from the experimenter or the human partner
266 him/herself. It is a key component for modeling discrete behaviors, which rely on
267 external information and is non-autonomous in a mathematical sense. The intro-
268 duction of the new variable allows VP and human to coordinate diverse movements
269 that range from simple rhythms to discrete actions. Figure 2a presents an interaction
270 between a human and a VP governed by the Excitator model, and shows a transition
271 from discrete movement (flexions and extensions interrupted by quiescent behavior)
272 to continuous movement.

273 4.2 Adaptive Behavior: Parameter Dynamics
274 and Modularity

275 The Excitator model shows how a single dynamical system may give rise to dif-
276 ferent behavioral modes of coordination between human and virtual partner.
277 However, each mode required a different set of parameters. Once those parameters
278 are fixed, the differential equations set the functional structure of the system for a
279 specific behavioral context. But structure, function and dynamics are not separated
280 in nature; everything is constantly evolving on different time scales [6, 43]. In
281 biology, organisms change their own behavior and learn new ones to better face the
282 world, and interact with their peers in a more effective manner. Robert Rosen even
283 associated adaptation as the most characteristic property of living things [78]. The
284 process of adaptation is ubiquitous in so-called complex adaptive systems that may
285 also encompass physical or artificial aspects [34]. In the case of the brain, it is not
286 surprising to observe such ongoing anticipation continuously [53]. Adaptation is
287 especially important in social behavior, for instance mimicry at the morphological
288 level [8] or interactional synchrony during cooperative imitation and skill learning
289 [21].
290 Coordination may be seen as a subtle blend of reaction and adaptation to the
291 other [16]. Whereas reaction takes place at a given time t, adaptation builds up over
292 time. For instance, humans may have a preferred movement frequency but they can
293 adapt to different partners by slowing down or speeding up their movements. In the
294 case of the Human Dynamic Clamp, frequency adjustment is a good candidate to
295 address adaptive behavior in a manner that is fully compatible with the previously
296 described systems, and uses the same formalism. Basically, frequency adaptation
297 requires a new equation in the system of differential equations that manages the rate
298 of change of frequency ω. At a more conceptual level, it fits with the idea that

The Human Dynamic Clamp: A Probe for Coordination … 9
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299 adaptation depends on the system’s ongoing intrinsic dynamics. Furthermore,
300 adaptation can enhance the realism of the interaction, by expanding beyond an
301 instantaneous coordination with the position of a finger or the phase of a movement.
302 Different strategies for modeling frequency adaptation have been proposed. In a
303 pure Artificial Intelligence (AI) tradition, a specific module detects the frequency of
304 the human partner which then controls VP’s actual frequency. This shows that it is
305 possible to successfully design an artificial device that is able to do the job. In the
306 Bayesian approach, adaptation is error-based and relies on reinforcement learning
307 [72]. This approach is inspired from real physiological processes. In predictive
308 coding, adaptation of model parameters is associated with Hebbian and synaptic
309 plasticity in the brain [23]. Other bottom-up strategies have been developed in the
310 fields of signal processing [54] and robotics [32]. Here we continue to follow the
311 strategy of Coordination Dynamics and Dynamical System Theory. That approach
312 was shown to better account for frequency adaptation in fireflies [17] and in tempo
313 adaptation to musical rhythms [61]; see also [56]. In contrast with the AI approach,
314 it is worth noting that the equations stay totally continuous and do not relate to an
315 artificial measurement of the human frequency. This illustrates how adaptation
316 relies on parameter dynamics according to the scale of observation [79].
317 Following Righetti and colleagues [76, 77], we introduce frequency adaptation
318 through the addition of a new dimension—related to ω—in the set of differential
319 equations:
320

x ̇= fx x, v,ωð Þ+KF tð Þ
v ̇= fv x, v,ωð Þ

!
and ω ̇=±KF tð Þ yffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 + v2
p . ð4Þ

322322

323 where K is the coupling strength of the adaptation, and F tð Þ is the coupling part of
324 the system. Figure 2b shows how a VP governed by the extended Excitator
325 equations is able to follow changes in movement frequency. Addition of a third
326 dimension also leads to unstable dynamics, less predictable from the human point
327 of view. This may be associated with the emergence of chaotic regimes that are
328 typical of 3-dimensional nonlinear dynamical systems [86]. Such unpredictability
329 can be associated with a form of intention [22]: a model of intentional behavior
330 could be further designed. That is what we will see in the next section.

331 4.3 Intentional Behavior: Symmetry Breaking and Forcing

332 In the case of an adaptive system, we have seen that adding a third dimension
333 renders the dynamics less predictable. The system is nevertheless not random and
334 appears more autonomous while still being governed by deterministic rules. This
335 balance between autonomy and coupling creates successful agency illusion and can
336 trigger an attribution of intention to the human observer [1, 3]. Keeping in mind that
337 the Human Dynamic Clamp aims at operationalizing models for experimental

10 G. Dumas et al.
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338 purposes, a teleonomic system is not adequate, because its intention is not directly
339 controllable by the experimenter.
340 In the initial VPI experiment [45], the control parameter μ (Eq. (1)) modulated
341 intention attribution in some participants. In general, adopting a principle-based
342 modeling requires redefining the boundary conditions of the model. Until now, we
343 were dealing with spontaneous coordination. It has been shown experimentally,
344 however, that intention affects the spontaneous potential landscape by stabilizing
345 and destabilizing specific dynamic patterns [51] including at the brain level [11].
346 The former empirical findings motivated an extension of the HKB model [84]; see
347 also [13] through the introduction of new term in the relative phase equation:
348

ϕ= a sinϕ+ b sin 2ϕ+ c sinψ −ϕ, ð5Þ
350350

351 where ψ is the intended relative phase. By incorporating an intentional forcing term
352 c which stabilizes or destabilizes particular patterns, the model was able to explain
353 experimental observations related to intentional switching between in-phase and
354 anti-phase.
355 We recently generalized the Schöner and Kelso coupling model [13], so the
356 intended relative phase angle ψ can take on any value between − π and + π:
357

Cint = −C cos ψð Þ x ̇− y ̇ð Þ+ sin ψð Þωyð Þ. ð6Þ
359359

360 This modification of VP dynamics makes it possible to direct a collective
361 behavior towards any desired pattern of coordination (see Fig. 2c). This offers new
362 experimental perspectives, e.g. to study how new dynamical patterns are learned on
363 top of a subject’s spontaneous behavioral repertoire [57].

364 5 Conclusion

365 In this chapter, we have seen how a hybrid system called the Human Dynamic
366 Clamp allows for real-time interaction between humans and virtual partners, based
367 on the equations of coordination dynamics built originally from HKB and its
368 extensions. A key aspect is that the human and its virtual partner are reciprocally
369 coupled: the human acquires information about the partner’s behavior through
370 perception, and the virtual partner continuously detects the human’s behavior
371 through the input of sensors. Our approach is analogous to that of the original
372 dynamic clamp used to study the dynamics of interactions between neurons, but
373 now scaled up to the level of behaving humans. This principle-based approach
374 offers a new paradigm for the study of social interaction. While stable and inter-
375 mittent coordination behaviors emerged that had previously been observed in
376 ordinary human social interactions, we also discovered novel behaviors or strategies
377 that had never been observed in human social behavior. Those novel behaviors
378 pertained to unexplored regions of the theoretical model and were possible ways of
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379 coordination for people to interact with each other. Such emergence of novel
380 behaviors demonstrates the scientific potential of HDC as a human-machine
381 framework. Modifying the dynamics of the virtual partner with the purpose of
382 inducing a desired human behavior, such as learning a new skill or as a tool for
383 therapy and rehabilitation, is one of several applications of VPI.
384 HDC allows to study social interaction with more experimental control than
385 other recent social neuroscience methods (e.g. hyperscanning); it is also a test bed
386 for theoretical models. HDC moves away from simple protocols in which systems
387 are ‘poked’ by virtue of ‘stimuli’ to address more complex, reciprocally connected
388 systems where meaningful interactions occur. Thus, the Human Dynamic Clamp
389 supports the development of a computational social neuroscience where theory,
390 experiment and modeling work hand-in-hand across neural, behavioral and social
391 scales [87].
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