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a b s t r a c t

Much evidence suggests that dynamic laws of neurobehavioral coordination are sui generis: they deal
with collective properties that are repeatable from one system to another and emerge from microscopic
dynamics but may not (even in principle) be deducible from them. Nevertheless, it is useful to try to
understand the relationship between different levels while all the time respecting the autonomy of
each. We report a program of research that uses the theoretical concepts of coordination dynamics
and quantitative measurements of simple, well-defined experimental model systems to explicitly relate
neural and behavioral levels of description in human beings. Our approach is both top-down and bottom-
up and aims at ending up in the sameplace: top-down to derive behavioral patterns fromneural fields, and
bottom-up to generate neural field patterns from bidirectional coupling between astrocytes and neurons.
Much progress can be made by recognizing that the two approaches—reductionism and emergentism—
are complementary. A key to understanding is to couch the coordination of very different things—from
molecules to thoughts—in the common language of coordination dynamics.

© 2012 Elsevier Ltd. All rights reserved.
1. The neural choreography challenge

New information about the brain is accruing at an astonishing
rate at every level—from the molecular to the social. Though
tremendous progress has been made, conspicuously lacking is a
broad framework of ideas with which to interpret and integrate
findings from so many different scales and levels of observation.
We are confronted, as a former President of the Society for
Neuroscience remarked in recent testimony to the US Congress,
with the grand challenge of elucidating ‘‘neural choreography’’
(see also Akil, Martone, & Van Essen, 2011). No single focused
level of analysis suffices to understand the brain and its disorders.
We need to identify the dancers,1 capture the essence of the
dance and uncover how disease disrupts it. The task is daunting:
the ‘functions’ of the brain and of brains interacting with each
other, aremanifold and nearly countless. Sift through, for example,
typical issues of Neural Networks or The Journal of Neuroscience.
The deep problem that won’t go away is the relationship between
brains and minds, whether individual or collective. Much progress
has been made, not least by the efforts of scientists and engineers
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in the field of neural networks, but an integrative picture is still
lacking. The gap between the language of molecules and cellular
machinery (genetics, neuroscience) and the language of mind and
its various disorders (cognitive science, neurology and psychiatry)
seems very large indeed and is fast widening. There is a belief that
things will work out in the end, but at the moment it remains just
that—a belief.

Might we take a different tack on the problem? Our intent here
is to outline a conceptual and empirical framework (‘a general
theory’) that aims to provide insight into how different levels of
organization across multiple space and time scales are connected.
Though it certainly relies upon them, on offer here is not a detailed
model of neurons and neural machinery supporting hypothesized
processes involved in cognition and behavior. The central idea is
that all such processes—regardless of the level of description—
depend on coordination and the different forms it takes. Our
approach is to identify the dynamic laws of coordination and
reveal their mechanistic realizations level by level, using both a
top-down and a bottom-up approach. By ascribing physiological
meaning to the parameters and mathematical expressions in a
(computationally implemented) phenomenological theory we aim
to bridge the gap between behavioral phenomena and their neural
underpinnings.

2. Connecting the micro and the macro

Twenty-five years ago, around the time that the journal Neu-
ral Networks was being founded, we reported empirical and
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Fig. 1. Multiple scales of the nervous system using synchrony as an example of neural coordination. Notice the right column corresponds to effects that are observed in
various task settings. The ‘local scale’ has three levels of analysis: single units, local field potentials (LFP) and ECOG/EEG. At larger scales, long range synchrony may be
observed between distant brain regions. At the inter-individual scale, neural synchronization emerges between different brains through reciprocal social interaction.
Source: Adapted from Varela et al. (2001).
theoretical results demonstrating that coordinated patterns of
human behavior could be explained using the concepts of self-
organization in open, nonequilibrium systems, particularly syner-
getics (Haken, 1977/1983) and themathematical tools of nonlinear
dynamics (Schöner & Kelso, 1988, for a review). We intimated
then that similar principles are likely to be present also in ele-
mentary neural circuits called central pattern generators. In the
intervening period, the evidence for mulitifunctionality in neural
circuitry viewed as multistable dynamical systems is overwhelm-
ing (Briggman & Kristan, 2008, Prinz, Bucher, & Marder, 2004;
see also Grillner & Graybiel, 2006). Moreover, in the last 30 years
principles of self-organization have been shown to govern pat-
terns of coordination (a) within a moving limb and between mov-
ing limbs; (b) between the articulators during speech production;
(c) between limbmovements and tactile, visual and auditory stim-
uli; (d) between people interacting with each other spontaneously
or intentionally; (e) between humans and avatars; (f) between hu-
mans and other species, as in riding a horse; and (g) within and
between the neural substrates that underlie the coupled behavior
of human beings as measured using MEG, EEG and fMRI (Fuchs &
Jirsa, 2008; Kelso, 1995, 2009, for reviews). How might these phe-
nomena be understood?

There are strong hints that laws of coordination in neurobe-
havioral systems are generic and deal with collective properties
that emerge from microscopic dynamics, but how to understand
such emergent phenomena has proven difficult in the extreme. An
argument can be made that such laws are truly sui generis and
that it may not be possible, even in principle, to deduce higher



122 J.A.S. Kelso et al. / Neural Networks 37 (2013) 120–131
level descriptions from lower level ones (Laughlin & Pines, 2000;
Turvey & Carello, 2012). The present approach is entirely con-
ventional with respect to the history of science. Fundamentally,
it begins with the identification of the macroscopic behavior of a
system and attempts to derive it from a level below. Even for
physical systems, however, the derivation of the ‘macro’ from the
‘micro’ is nontrivial. Only in the 1970s, for example, was it possi-
ble to derive the behavior of ferromagnets (as described by Lan-
dau’s mean field theory) from more fundamental grounds using
the so-called renormalization group method that earned Kenneth
Wilson the Nobel Prize in 1982 (Wilson, 1979). Thus, only some
70 years after atoms were discovered did it become possible to
derivemacroscopic properties of certainmaterials fromamoremi-
croscopic basis, and only thenusing rather sophisticated and some-
what cumbersome mathematical techniques (cf. Laughlin & Pines,
2000).

One lesson to be learned from such successes in connecting the
micro and the macro is that it is crucial to first have a precise
description of the macroscopic behavior of a system in order to
know what to derive. Without the phenomenological theory of
phase transitions, for instance, with their critical exponents and
so forth, microscopic approaches would be meaningless. Another
lesson is that even in a systemwhosemicroscopic constituents are
homogeneous (unlike, say, the neurons, glia and neurotransmitters
of the brain) special methods are needed to handle events and
interactions that are occurring on many spatial and temporal
scales. In an apparently heterogeneous, hierarchically organized
system like the nervous system, it is necessary to proceed in a
trans-level fashion with as intimate an interplay between theory
and experiment as possible usingmultiple observables in line with
what the existing technology allows—and keeping an eye out for
new techniques that may open up additional levels of description.
Fig. 1 conveys some of the scales and methods we will consider
here, along with examples of how they have been employed in
various cognitive tasks.

3. Finding relevant variables

Our strategy for traversing levels is shown in Fig. 2.
The basic idea is to identify relevant variables characteriz-

ing coordinated or collective states of the system and the collec-
tive variable’s dynamics (i.e. equations of motion for collective
variables). Note that in most neurobehavioral systems these are
not known in advance, but have to be found. The experimental
method uses transition points or instabilities to clearly distinguish
different coordinated behaviors. In coordination dynamics, phase
transitions are exploited both as a dynamical mechanism for ef-
fecting change (‘switching’, ‘decision-making’) and as a method-
ology to identify key collective variables and their dynamics. The
reason is that in complex systems very many features can be mea-
sured but not all are relevant; coordination dynamics assumes
that the variables that change qualitatively are the most impor-
tant ones for system function (and, incidentally, for the scien-
tist trying to understand it). It is these collective variables that
are mapped on to a dynamical system. Further experiments are
necessary to identify the component dynamics and further the-
ory is needed to derive the collective variable dynamics from
nonlinear interactions among components. Rhythmic coordina-
tion, an example of which is synchronization (cf. Fig. 1)—with
its long history in biology and behavior—proves to be an excel-
lent starting point for developing a multi-level understanding of
coordination. Experiments show, for example that the rhythmic
motion of a single finger, which exhibits dynamic properties such
as transient behavior and amplitude dependence on movement
rate can be modeled as a hybrid Van der Pol–Rayleigh oscillator.
Once the finger motion is coupled to other signals, e.g. the other
hand starts to move or an external periodic stimulus is present—or
even a virtual moving finger is present as in the human dynamic
Fig. 2. Level-crossing strategy (both horizontal and vertical) connecting compo-
nents, behavioral and brain patterns and their dynamics (see text for details). Notice
the strategy reflects a strictly operational approach.

clamp or virtual partner interaction paradigm (Kelso, DeGuzman,
Reveley, & Tognoli, 2009)—then the relative phase between fin-
ger motion and the additional signal becomes a meaningful de-
scriptor of coordination. However, not every relative phase will be
selected. The coupling establishes a symmetry breaking by con-
straining the number of existing phase states. Moreover, not every
existing relative phase is actually stable: an unstable state or repel-
lor may separate stable states. When control parameters such as
the movement rate are manipulated, coordination states may be-
come unstable and the system may exhibit a transition from one
state to another. In the vicinity of phase transitions, complex, open
systems become lowdimensional. Thus, in this picture, phase tran-
sitions are the core of self-organization. Since their original discov-
ery in experiments and consequent theoretical modeling (Haken,
Kelso, & Bunz, 1985; Kelso, 1981, 1984; Kelso, DelColle, & Schöner,
1990; Schöner, Haken, &Kelso, 1986), phase transitions and related
dynamical phenomena have been observed in many different sys-
tems ranging from bimanual and sensorimotor coordination and
their neural correlates, to interpersonal and interbrain coordina-
tion (for reviews, Dumas, Nadel, Soussignan,Martinerie, &Garnero,
2010; Fuchs & Kelso, 2009; Kelso, 1995, 2009, 2010; Kelso et al.,
2009; Oullier & Kelso, 2009; Tognoli, 2008). A specific example of
our strategic approach is provided in Fig. 3.

4. Phase transitions in coupled neural populations

To find generic mechanisms of dynamical systems is a powerful
way to classify behavior on any level of description, but on its own
makes no explicit connection to the underlying neural substrate
and its dynamics. The key idea is to follow the same conceptual
approach as on the behavioral level, namely to identify functionally
relevant neural components (‘our dancers’) that must be coupled
together to accomplish the coordination involved in cognitive
processing. For such coordination, information flow is seldom of
the sender–receiver, input–output unidirectional kind (Tognoli &
Kelso, in press). On the contrary, the bidirectional nature of the
coupling proves to be a crucial aspect of dynamic coordination,
regardless of whether two hands, two people and two brains are
interacting for social functions (Banerjee, Tognoli, Kelso, & Jirsa,
2012; Dumas et al., 2010; Naeem, Prasad, Watson, & Kelso, 2012;
Tognoli, Lagarde, DeGuzman, & Kelso, 2007) or astrocytes and
neurons are interacting for normal synaptic transmission (Wade,
McDaid, Harkin, Crunelli, & Kelso, 2011a, 2011b).

The answer to the question of neuronal mechanisms depends
again on the chosen level of description. Experimentally accessible
observables are provided by non-invasive techniques such as elec-
troencephalography (EEG), magnetoencephalography (MEG) and
structural and functional magnetic resonance imaging (MRI, fMRI).
The first two techniques, EEG and MEG, are direct measures of the
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Fig. 3. A specific example of deriving the collective variable, relative phase dynamics from the (nonlinear) components and their (nonlinear) interaction.
functional organization of neuronal populations. EEGmeasures the
electric potential on the skull surface; MEG usually measures the
gradient of the magnetic field over the radial direction above the
surface of the skull. Both signals are generated by the simultane-
ous neuroelectric activity of hundreds of thousands of neurons lo-
cated mainly in the neocortex. The spatial resolution of EEG and
MEG is on the order of cm., its temporal resolution is ms. Struc-
tural MRI provides three-dimensional coordinates of neuronal tis-
sue on the scale ofmm. fMRImeasures themetabolic activity of the
brain, hence providing an indirect measure of neuronal activation
on the spatial scale ofmmand temporal scale of s. In short, EEG and
MEGprovidemeasures of neuronal correlates on the same (or even
faster) time scale as human behavior, but are confined to the skull
surface, whereas fMRI is three-dimensional and spatially precise,
but remains an indirect measure and a bit too slow to capture hu-
man behavior in real time. Taken together, these techniques mea-
sure complementary facets of the same neuronal processes. For
illustrative purposes, we turn to Fig. 4 where the same phase tran-
sition paradigm (Kelso, 1990) is carried out on behavioral, EEG,
MEG and fMRI levels, albeit in different experiments. Not shown
is recent work that focuses on the transition itself, for instance
Jantzen et al.’s (2009) study of BOLD changes in specific neural re-
gions as a control parameter drives the system toward instabilities;
remarkablework byMeyer-Lindenberg, Zieman, Hajak, Cohen, and
Berman (2002) which uses TMS as a perturbation to provoke in-
stabilities in both brain recordings and behavior2; and Banerjee’s
(2012) researchwhich captures transient recruitment of neural as-
semblies at the transition from antiphase to in-phase.

2 Obviously, the combination of these techniques brings many advances. For
instance, the introduction of structural priors with MRI allows the reconstruction
5. Connecting behavioral and neural dynamics

Following the same strategy as the behavioral level, with
the foregoing techniques it is possible to define an isolated
spatiotemporal event such as a rhythmic finger movement, with
the goal of identifying its neuronal correlates. Simple sensory and
motor events are well represented in EEG and MEG signals and
hence well-suited to investigating the neural dynamics. Obviously
there is a relation between the spatiotemporal pattern in the EEG
and MEG and the underlying neuronal generators. For present
purposes, we bypass the so-called inverse problem (but seeMurzin
et al., 2011) and seek to identify the dynamics of the patterns in
the EEG and MEG. In the case of sensorimotor coordination, MEG
experiments showed that to get the finger to the right place at
the right time, the velocity of movement is a key parameter that
is highly correlated with the spatiotemporal pattern of the MEG
(Kelso et al., 1998). To model this simple but tight relationship,
Fuchs, Jirsa, and Kelso (2000) were able to express the finger
movement r(t) as a convolution of amemory functionG(t−τ)with
its neuronal signal Ψ (x, τ ) over past times, τ . This expression was
projected on a spatial template pattern β(x) which represents the
spatial distribution of the neuronal areas involved in the behavioral
task. Both the memory function and the template can be identified
from the experimental data. Then Fuchs et al. (2000) reconstructed

of cortical sources from EEG and MEG signals (e.g. Murzin, Fuchs, & Kelso, 2011).
Axonal white matter can now be tracked using diffusion MRI or DTI providing a
snapshot of the structural connectivity of the brain. And recent progress permits
access to EEG and fMRI simultaneously (e.g. Laufs et al., 2003).
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Fig. 4. Observations of phase transitions and their neural correlates: behavior (top three panels), MEG, EEG and fMRI. The approach emphasizes garnering experimental
evidence at multiple levels using multiple technologies.
Source: Adapted from Oullier et al. (2006).
the finger movement r(t) as:

r(t) =


Γ

dxβ(x)


Γ

dτG(t − τ)Ψ (x, τ ).

The linear relationship between the neuronal activation Ψ (x, t)
and the finger movement r(t) is due to the rhythmic nature
of the movement task. Experimentally, it also turns out that
the memory function is an exponential function and the spatial
template involves mainly contralateral primary motor areas and
someminor contributions from the ipsilateral cortex. Equivalently,
the above relationship says that the finger movement is an
oscillator that is driven by neuronal activity. Given experimental
information about the memory function and the spatial template,
finger movement can be ‘‘read out’’ directly from the neuronal
activityΨ (x, t). In the case of bimanual coordination, the neuronal
patterns Ψ1(t) and Ψ2(t) corresponding to the two finger motions,
r1(t) and r2(t) have to interact. These patterns are obtained as
projections Ψi(t) =


Γ

βi(x)Ψ (x, t)dx of the neuronal activity
onto the individual spatial templates βi(x), i = 1, 2. Jirsa,
Fuchs, and Kelso (1998) applied a simple transformation Ψ+(t) =

Ψ1(t) + Ψ2(t) and Ψ−(t) = Ψ1(t) − Ψ2(t) that expressed the
neuronal pattern dynamics in terms of the patterns of behavioral
coordination observed in the original Kelso experiments. At
the critical frequency, this predicts that the neuronal pattern
for antiphase behavior, Ψ−(t) becomes unstable and leads to
the emergence of a new spatiotemporal organization, the in-
phase pattern Ψ+(t). Experimental data from full-head MEG
measurements supported this prediction, analysis revealing that
a change in the symmetry of the brain pattern occurred across the
behavioral transition (Jirsa et al., 1998; see also Banerjee et al., 2012
for a different approach using EEG). The dynamical mechanism
for both neuronal and behavioral levels proves to be of the same
generic type, a pitchfork bifurcation.

6. Deriving behavioral and brain patterns from neural ensem-
ble dynamics

How close are we to our goal of connecting neuronal dynamics
to underlying biological mechanisms? According to the present
strategy, in order to move beyond this still phenomenological
level and identify underlying neural processes one has to go at
least to the level of neural ensembles. Models of neural ensembles
have a long history and differ in terms of connectivity and
inclusion of physiological detail (see, for example Amari, 1977;
Ermentrout, 1998; Nunez, 1974, 1995; Robinson, Rennie, &Wright,
1997; Wilson & Cowan, 1972, 1973; Wright & Liley, 1995). For
our purposes, a good candidate is Jirsa and Haken’s (1996,1997)
neuronal field model which uses so-called ‘conversion operations’
(see Freeman, 1992, for a review) to define mathematical relations
between firing rates and local field potentials (cf. Fig. 1). This is
important because: (a) Freeman’s and others’ experiments on a
variety of cortical areas reveal a well-defined relation between
neuronal firing rates and the local field potential; and (b) it allows a
connection to observable quantities in the EEG andMEG. Dendritic
currents generated by active synapses are responsible for the
extracellular local field potential measured in the former, and
likewise intracellular dendritic currents are thought to generate
the MEG signal. The wave-to-spike conversion from the local field
potential is sigmoidal within a neuronal ensemble; the inverse
spike-to-wave conversion from firing rate to the local field is
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also sigmoidal but is constrained to a small signal linear change.3
Both short range intracortical fibers (excitatory and inhibitory) and
long range corticocortical fibers (excitatory only) constitute the
connectivity required to capture the relatively large spatial and
temporal scales of EEG and MEG. Propagation along long range
fibers may cause propagation delays up to 200 ms, consistent with
the timescale of most behavior. In the neuronal field model, the
notion of a functional unit—a spatiotemporal mapping relating
external events to neuronal events—is central (cf. Fig. 2). For
the specific case of bimanual coordination, the cortical sheet
is divided into left and right hemispheric areas representing
pre- and postcentral cortices containing the primary motor and
sensorimotor areas of the left and right fingers. Localization of
these areas obeys a reflection symmetry with respect to the
plane between the two hemispheres. Sensorimotor units receive
proprioceptive and kinesthetic information from the respective
finger movements and motor areas may be thought of as driving
the fingers. The spatiotemporal details of how the motor areas
drive the finger oscillation is given by the functional mapping
described above (Fuchs et al., 2000; Kelso, Fuchs, & Jirsa, 1999).
Mathematical analysis of these equations by Jirsa et al. (1998)
and Jirsa, Fuchs, and Kelso (1999) predicts that the neuronal
activity will show a spatially antisymmetric organization in the
antiphase condition, but then undergo a transition to a symmetric
organization simultaneously with the behavioral transition to in-
phase. Numerical simulations of the neuronal ensemble dynamics
confirm the mathematical predictions.

7. Combining dynamical modeling with anatomical structure

In contrast to a purely phenomenological theory, notice that it is
now possible to make statements about the relationship between
behavioral dynamics and biological mechanisms. Phenomenologi-
cal parameters on the behavioral level are now expressed in terms
of the physiological and anatomical parameters in the neuronal
field model. Callosal projections of motor and sensorimotor areas
between the hemispheres are spatially symmetric with respect to
the reflection at the plane separating the hemispheres. These con-
nections couple the motor systems on both hemispheres directly;
thus they strongly contribute to the neuronal dynamics during bi-
manual coordination in particular, because they contribute to the
spatial overlap of functional units (see also Banerjee & Jirsa, 2007;
Banerjee, Tognoli, Assisi, Kelso, & Jirsa, 2008; Daffertshofer, Peper,
& Beek, 2005; Tuller & Kelso, 1989). The spatial overlap hypoth-
esis was tested in the experimental MEG data and found to be
consistent with neuronal field theory (see Jirsa et al., 1998). More
recently, Banerjee et al. (2012) tracked spatiotemporal reorganiza-
tion of the brain through the transition from antiphase to in-phase
bimanual coordination. Brain networks participating in unimanual
movementswere found to reorganize themselves during bimanual
coordination patterns; recruitment of additional brain areas was

3 Learning is approached via local changes of synaptic weights resulting in
a temporal dependence of the connectivity function, i.e., the integral kernel.
Attention and intention are approached via local changes in the sigmoidal response
curves of neural ensembles, the so-called conversion operations. These conversion
operations have been investigated in quantitative detail as a function of attention
(e.g. Freeman, 1975). The main result is that the slope and the height of the
sigmoid vary by a factor of 2.5 between minimal and maximal attention. The
sigmoidal variation of the ensemble response is realized biochemically by different
concentrations of neurotransmitters such as dopamine and norepinephrine.
Mathematically, the neural dynamics described by the spatiotemporal integral
equations can be coupled to a one-dimensional concentration field in which
elevated values designate increased values of slope and height of the sigmoidal
response curve of neural ensembles. An increased slope and height of the sigmoid
typically causes increased amplitude and excitability of the neural sheet (Jirsa,
personal communication).
mostly confined to the period surrounding the behavioral phase
transition. The story told in the previous segments is a testament
to the strategy of connecting levels using as tight a connection be-
tween experiment and theory as possible. Much more of course
can be (and has been) done. Obviously, the level of anatomical and
physiological detail can always be enhanced. For example, the ge-
ometry of the cortex can be defined in three dimensions to enable
stronger experimental testing. The neuronal field model has to be
elaborated to include functionally relevant subsystems, including
subcortical components, so that their role in brain coordination can
be addressed. The connectivity should contain additional structure.
For instance, the density of connections of axonal fiber systems is
not translationally invariant, i.e., is not everywhere the same. In-
tracortically speaking, the description of the cortex by a densely
connected mesh is attractive and justifiable. However, the myeli-
nated extracortical fiber system is sparse and selective. One would
expect this aspect to have some functional significance for the spa-
tial and temporal scales measured in EEG and MEG.

All of these aspects and more have been elaborated in further
work by Jirsa and colleagues (Jirsa, Fuchs, Jantzen, & Kelso, 2002;
Jirsa, Jantzen, Fuchs, & Kelso, 2001). Neuronal field dynamics
on the sphere along with the mapping of functional units onto
the folded cortex and forward solutions (aided by fMRI) for EEG
and MEG provide a platform for the further development of a
multi-level model of human brain and behavioral function (see
also Jirsa, Sporns, & Breakspear, 2010). Interconnected neural
ensembles with homogeneous connections represent a neural
level, while a network or systems level is defined by the
interaction between heterogeneously connected cortical regions.
The complementarity of structure and dynamics is at play
here: while the anatomical structure constrains the dynamics,
the dynamics simultaneously shapes the structure. The former
relationship has been specifically approached through the study
of how anatomical connectivity influences resting state activity
and more specifically the so-called Default Mode Network (DMN)
(Cabral, Hugues, Sporns, & Deco, 2011; Honey et al., 2009). In
coordination tasks, heterogeneous fiber tracts connect the cortical,
subcortical and spinal subsystems involved. These pathways
couple the subsystems and thus add to their cross-talk and the
resulting coordination dynamics.Without getting overly technical,
heterogeneities introduce additional entries in the connectivity
matrix of the neural field (Assisi, Jirsa, & Kelso, 2005; Jirsa
& Kelso, 2000; Qubbaj & Jirsa, 2007) carrying information on
distance and strength of coupling between areas. Developing
technologies, such as diffusion tensor weighted imaging (DTI),
provide information regarding the integrity of white matter tracts
in the connectivity matrix of individual subjects (for an interesting
application, see Jing et al., 2011). The present approach thus
allows for the integration of neurophysiological and anatomical
facts regarding the coupling among neural ensembles for various
behavioral functions, setting the stage on which non-invasive
brain imaging, theory, experiment, modeling and data analysis can
play out—a true TEAM approach (Theory, Experiment, Analysis
and Modeling). From the perspective of coordination dynamics,
the conceptual and methodological framework presented here
allows for the development of a theoretical model of human
brain function and behavior that operates at multiple levels of
description. Laws of behavioral coordination may be connected
to laws of neuronal pattern generation at the level of neuronal
ensembles. Via the TEAM approach of coordination dynamics, it
is now possible to link dynamical mechanisms and physiological
quantities.

8. Down to the level of neural masses

It is obviously possible to continue the strategy of traversing
scales further and further downward to levels that the field
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Fig. 5. Schematic of the neural field method. A small cortical volume with mixed populations of excitatory (red) and inhibitory (black) neurons is synthesized in two mean
fields: X1 representing the excitatory subpopulation (pink) drives every neuron, and X2 representing the inhibitory subpopulation (gray) affects only the excitatory neurons.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Source: Adapted from Stefanescu and Jirsa (2008).
of neuroscience and neurocomputation consider quite basic for
information processing, namely the level of spiking neurons
(Fig. 1). This is a place where the mathematical formalisms of
neural networks and their applications have been quite successful.
For example, in the field of fault tolerant computing, neural
networks offer a fine-grained distributed computing architecture
that enables fault tolerance to be realized at very low levels of
granularity; computations may be mapped across many neuron
clusters permitting a ‘‘scattering’’ of faults without significantly
degrading computation (Harkin et al., 2009). Interesting and
challenging though such applications are, the goal here is slightly
different. Above we reviewed evidence and theory indicating that
ordinary behavioral coordination can be connected explicitly to
neural fields: might it now be possible to reverse direction, as it
were, and derive neural field descriptions from the bottom up?
On the theoretical side, one of the bridges one has to cross is that
large parameter spaces are involved: the interacting elements are
differentiated and so numerous that combinatoric explosion is a
humongous problem. Once again we are faced with the problem
of preserving biophysical relevance at the same time as handling
the large number of degrees of freedom involved. One way to
decrease the complexity of models is by reducing the number of
different types of neurons, synaptic connections and states. Such
an approach simplifies simulations of large heterogeneous neural
networks bymapping the collective state of similar types of neuron
onto a probabilistic density distribution in the phase space (for an
excellent review see Deco, Jirsa, Robinson, Breakspear, & Friston,
2008). Then, the dynamics of each class can be summarized in a
single set of differential equations. These Fokker–Planck equations
describe the temporal evolution of the probability density
distributions over the state-space, representing the distribution
of the ensemble of trajectories of all neurons within one class.
Although a systematic exploration of the parameter space is still
computationally expensive, two approximations are commonly
used: the first consists of focusing only on the stationary solutions
of the Fokker–Planck equations; the second consists in replacing
the probability density distributions by their mass-center which
provides a single number that represents the average activity
of the population. The resulting model is then called a ‘neural
mass’. Neural masses have already proven useful in modeling
electrophysiological recordings such as EEG and MEG: ‘dynamic
causal modeling’ uses them as a heuristic to infer the coupling
among brain regions from experimental data (Friston, Harrison, &
Penny, 2003; Marreiros, Stephan, & Friston, 2010). Despite fairly
realistic results, neural mass models are a work in progress:
further efforts are needed in order to accommodate the joint and
often conflicting demands of biological realism and computational
tractability. One technique is to subdivide neuronal populations
according to their types (e.g. excitatory/inhibitory) and reduce
complexity using mode decomposition techniques (Stefanescu &
Jirsa, 2008). This gives access to the vaster range of complex
dynamics observed in real data yet still employs a low dimensional
description, thereby greatly easing computational costs. Fig. 5
provides an image of the neural mass, an hypothesized unit of
neurocomputation (Izhikevich & Edelman, 2008). Other recent
developments introduce spatial constraints (Pinotsis & Friston,
2011). Such spatial priors allow one to recover the dynamics of
cortical activity even in the absence of explicit spatial information
in experimental data (Pinotsis, Moran, & Friston, 2012): they also
can accommodate dynamic behaviors such as pattern formation
and traveling waves (Coombes, 2006). Even though the relation
between neural masses (as nodes in a network) and neural fields
seems conceptually clear, it is fair to say that the distance between
neural masses, neural fields and human cognition and behavior
is still in need of shortening. Nevertheless, the path advocated
here to understand how neural fields arise from both cellular and
behavioral constraints seems open.

9. Bidirectional coupling: from neuro-glial masses to social
interaction

The importance of bidirectional coupling in a general theory of
neural and behavioral coordination can hardly be overemphasized.
At the level of individual cells—the last rung in the ladder, at
least for present purposes, bidirectional coupling is manifest in
the tripartite synapse. The usual pre–post synaptic communication
involves one-way (sender–receiver, Shannonian-like) chemical
transmission. As is now well-known, in the tripartite synapse
an astrocyte process connects with the axon and dendrite of
both the pre- and post-synaptic neurons and is sensitive to
neurotransmitters within the extracellular fluid in the synaptic
cleft. When neurotransmitter, e.g. glutamate, is released into the
synaptic cleft by the presynaptic terminal, some of it interacts
with glutamate receptors on the astrocyte. This then initiates
the release of so-called IP3 into the astrocytic cytoplasm. IP3
subsequently binds to IP3 receptors on the Endoplasmic Reticulum
(ER), a long network of tubes and vesicles used to store calcium
within the cell. The binding of IP3 with IP3 receptors opens
channels that allow the release of Ca2+ from the ER into the
cytoplasm (Ca2+ puff).While individual Ca2+ puffs are incapable of
propagating intracellularly, several puffs can raise Ca2 levels in the
cytoplasm beyond a threshold and an oscillating Calcium Induced
Calcium Release (CICR) propagation is observed. The increase in
cytosolic Ca2+ then causes the release of neurotransmitter, more
commonly called gliotransmitter, back into the synaptic cleft. The
end result of all this is that the astrocyte can modulate synaptic
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Fig. 6. The astrocyte˜neuron (AN)model block diagram showing interactions between an astrocyte and neuron. The ANmodel itself is constructed from empirically verified
biophysical models which are combined in realistic ways to produce emergent coordinative effects.
Source: FromWade et al. (2011a).
Fig. 7. The complementary nature of reduction and emergence in the general theory emphasizes bidirectional coupling at all levels, both within and across brains.
transmission between pre- and post-synaptic neurons based on
the previous activity of the synapse and the type of transmitter
released–bidirectional neuronal˜astrocyte coupling.

At this level of description the strategy is to construct bio-
physically realistic models of essential cellular processes such as
calcium transport, presynaptic inhibition, etc. and ‘synergize’
them—just like Nature herself—to produce emergent coordinative
effects such as synchronization and phase-locking, learning (Spike
Timing Dependent Plasticity), repair, and so forth. This has al-
ready been demonstrated in the astrocyte-neuronal (AN) model
of Wade et al. (2011a, 2011b) illustrated in Fig. 6. The intriguing
possibility (perhaps even more than that) is that these elementary
models can be scaled up to the level of neuro-glial masses, that
scale up to the level of neural fields composed of networks that
produce patterns of neural activity in distributed cortical and sub-
cortical areas of the brain, that (when exposed to external stimuli
and internal influences such as neuromodulators) lead to the co-
ordinated patterns of behavior involved in perceiving, attending,
decision-making, learning, remembering, selecting and controlling
movements—all the functions ofmind—and ultimately to the coor-
dination between brains and people (see Fig. 7).

10. The brain: a geography of rhythms

The general theory of behavioral and brain coordination
uses instabilities in behavior as an entry point and proceeds
downward to the level of neural masses and (if Providence
permits) back up again from the level of astrocyte-neuronal
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interactions. An approach entirely consistent with the theory
has explored variability (1/f fluctuations) at behavioral and
neural levels demonstrating the existence of similar scaling
laws in psychophysical studies and neural data (Palva & Palva,
2011; see also Chen, Ding, & Kelso, 1997; Chialvo, 2010; Ding,
Chen, & Kelso, 2002; Plenz & Thiagarian, 2007). Such work
is highly suggestive that common dynamics are at play at
multiple scales—without necessarily providing a picture about
their local underpinnings (Beggs & Timme, 2012). In this respect,
neuroscience has made considerable progress in the theorization
of brain dynamics noticeably with the study of oscillatory
activity. Interestingly, the collective effort of the computational
neuroscience community toward the creation of a ‘‘virtual brain’’
(Jirsa et al., 2010) has also demonstrated the pervasive nature
of such mesoscopic dynamical patterns. At this scale, the brain
is indeed dominated by rhythmic activity covering frequencies
from approximately near DC to several hundred Hertz, with
specific frequency bands hypothesized to act as independent
channels of communication and coordination (Roopun, 2008).
Since even single neurons are also endowed with the capacity
to express multiple frequencies, it has been proposed to view
neural oscillations as the ‘‘critical middle ground’’ connecting
neurons to behavior (Buzsáki & Draguhn, 2004). Understanding of
neural oscillations and synchrony has progressively evolved from
the early correlative observations with EEG to more functional
accounts (Uhlhaas et al., 2009). This shift has been accelerated in
the 1990s when an international buzz appeared around gamma
oscillations and their potential linkwith consciousness. Even if a bit
hyped, this produced a number of insightful results and extended
our knowledge of neurodynamics. Observations span multiple
scales in both space and time, from the percept-relatedmodulation
of gamma oscillations in neuronal microcircuits (e.g. Bressler &
Freeman, 1980) to motor-related modulations of beta oscillations
at scalp level (e.g. Boonstra, Daffertshofer, Breakspear, & Beek,
2007; Houweling, Beek, & Daffertshofer, 2010). In short, neural
synchronization has been under the spotlight ever since it
was proposed as a potential mechanism for the integration of
information among distant brain regions (Fries, 2005; Varela,
Lachaux, Rodriguez, & Martinerie, 2001).

Amathematical account of both oscillation and synchronization
phenomena can be carried out with networks of oscillators, very
much along the lines of the general theory proposed here.Whereas
such a model may appear biophysically far from the individual
neurons compared to neural masses, it fits the mesoscopic scale
dominated by oscillatory activity. Though an idealization as far
as the brain is concerned, the Kuramoto model of weakly phase-
coupled oscillators is the most commonly used. As long as the
coupling is weak and the subsystems nearly identical, this model
has been demonstrated to approximate the long-term behavior
of any ensemble of interacting oscillatory systems (Acebron,
Bonilla, Vicente, Ritort, & Spigler, 2005; Kuramoto, 1975). It
has already been proposed for unifying brain oscillations and
their relationship to basic computational processes including
multistability, criticality, and information capacity (for a review
see Breakspear, Heitmann, & Daffertshofer, 2010). Combined with
‘realistic’ connectivity, the Kuramoto model has shown similar
efficiency to neural mass models for simulating the dynamical
consequences of cortical lesions (Honey & Sporns, 2008). Recent
studies have also demonstrated how resting-state neural dynamics
can originate from the interplay between the local neural dynamics
and the large-scale structure of the brain (Honey et al., 2009);
(Cabral et al., 2011). Most of the studies thus far have focused
on the isolated brain. Yet the Kuramoto model has been applied
to complex systems in physics, biology, and social science, and
is a useful tool for traversing multiple scales of brain and
behavior. The inter-individual level has been approached recently
through the modeling of perception–action coupling between two
virtual brains using Kuramoto oscillators combined with realistic
anatomical structure (Dumas, Chavez, Nadel, & Martinerie, 2012).
This study follows directly the experimental demonstration that
behavioral synchrony correlates with the emergence of inter-
brain synchronization (Dumas et al., 2010; cf. Fig. 1). Simulations
describe how the anatomical structure affects both intra- and
inter-individual neural dynamics: at the intra-individual level by
favoring dynamical modes such as the alpha rhythm; at the inter-
individual level, by facilitating inter-brain synchronization and
thus partly accounting for our propensity to generate self–other
dynamical couplings. By directly linking intra- and inter-brain
synchronization, the work opens a way to draw a connection
between neural, behavioral and social scales and thereby extend
the general theory.

11. From synchronization to metastability

As an hypothesized mechanism for integration in the brain,
synchronization has captured by far the most attention among
neuroscientists (see, e.g. the many contributions in Von der
Malsburg, Phillips, & Singer, 2010). We all like to see order
in our data and synchronization—as a highly ordered form of
phase- and frequency-locked coordination—not only catches the
eye but is accessible through an armamentarium of analysis
methods (cf. Fig. 1). But the brain and the mind are always
in constant flux, ensembles of neurons being assembled and
annihilated continuously. Whereas synchronization (usually in-
phase) naturally arises in Kuramoto-like models, it is viewed here
as only one regime of brain coordination dynamics. Elsewhere we
have discussed in some detail also the metastable regime which
arises when the system exhibits both an integrative tendency,
i.e. a tendency to synchronize, and a tendency for the components
to maintain their autonomy (e.g. Bressler & Kelso, 2001; Kelso,
1991, 1995, 2001, 2008, 2012; Kelso & Tognoli, 2007; Tognoli &
Kelso, 2009). Metastability consists of a more subtle dwell and
escape dynamic in which the brain is never quite stable and
merely expresses a joint tendency or disposition for neural areas
to synchronize together and to oscillate independently. In the
general theory, metastability (with its slow–fast, dwell–escape
dynamic) is the way the brain constantly creates and destroys
neural assemblies. Measuring metastability in neurophysiological
(and behavioral) data represents a methodological challenge since
this dynamical behavior is more complex than phase locking
(for possible metrics, see Kelso, 2008). The two main issues are
to first determine if a system is metastable (in whole, in parts
and at times); and then to quantify its properties to assess the
kind of coordination dynamics that exists between the parts
(for instance, the degree of integration˜segregation, the particular
phase relationships between transient subensembles, their spatial
and temporal endurance, the temporal positioning of escape
behaviors, and all other properties that contribute to the specifics
of the system’s function). The former issue, determination of
metastability, may be addressed with perturbation paradigms
applied to properly prepared systems (Kitajo, Miyota, Shimono,
Yamanaka, & Yamaguchi, 2011; Massimini, Boly, Casali, Rosanova,
& Tononi, 2009; Stamoulis, Oberman, Praeg, Bashir, & Pascual-
Leone, 2011). As for the latter issue (what kind of metastability
one is dealing with), a promising method would be model fitting
performed on collective variables, with special emphasis on the
location of dwells and escapes and their spread. When there
are two tendencies, the most common metastability case, it is
possible to relate empirically observed features (e.g. histograms
of the relative phase) with the parameters of the extended-HKB
model (Kelso et al., 1990). Importantly, such an approach combines
both dwell and escape phenomena rather than treating them
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separately as instances of coordination behavior resembling states
and transition (see also Kelso & Tognoli, 2007). Nevertheless,
metastability could be associated with multistable or monostable
regimes of coordination by alternation in time and co-existence in
space as in dynamical chimera (Kelso, 2012; Kelso & Tognoli, 2007;
Shanahan, 2010). Metastability emphasizes the transient nature of
the ongoing coordination dynamics and is linked to intermittency
(Pomeau & Manneville, 1980) and chaotic itinerancy (Tsuda,
2001; Tsuda, Koerner, & Shimizu, 1987). These aspects can been
approached quantitatively with tools such as the entropy derived
from the spectral density (Friston, 1997) or connectivity indicators
and metrics computed on brain functional networks (Sporns,
2004; Sporns & Tononi, 2002). Furthermore, as metastability is
characterized by a stationary transient regime, its presence may
also be associated with self-organized criticality (Bak, Tang, &
Wiesenfeld, 1988). This last phenomenon is traditionally assessed
through the discovery of power-laws and scale-free quantities
(Chen et al., 1997; Chialvo, 2010; Kitzbichler, Smith, Christensen,
& Bullmore, 2009). At this point, it is important to notice how
metastability is a phenomenon in its own right not just a sequence
of transitions between multiple states (Kelso, 2012; Kelso &
Tognoli, 2007).

Viewed as a generative dynamical mechanism, metastability
is in line with observations that ensembles of neurons of various
sizes come together and disband incessantly (Beggs & Timme,
2012; Plenz & Thiagarian, 2007). According to the present theory,
the normal brain realizes its complexity at all scales not in its
most ordered form (integration qua synchronization) or disordered
form (segregation qua desynchronization), but in a subtle blend
of both tendencies (see also Tononi, Sporns, & Edelman, 1994).
The logic of the brain is not only either/or, but both˜and.
Dual tendencies for integration and segregation constitute a
complementary pair (Kelso & Engstrøm, 2006) very much along
the lines proposed by StephenGrossberg, one of the pioneers of the
field of Neural Networks: the brain is organized to obey principles
of complementarity (Grossberg, 2000). Metastable coordination
dynamics rationalizes James (1890) beautiful metaphor of the
stream of consciousness as the flight of a bird whose life journey
consists of ‘perchings’ (phase gathering, integrative tendencies)
and ‘flights’ (phase scattering, segregative tendencies). Both
tendencies appear to be crucial: the former to summon and
create thoughts; the latter to release individual brain areas to
participate in other acts of cognition, emotion and action. Of
course, the hypothesis of metastable coordination dynamics in all
itsmanifestations as the organizing principle of brain and cognitive
function—as the essence of ‘neural choreography’—is the testbed
of the general theory. If the brain does not work according to
metastable coordination dynamics, and if brains working together
do not work according to metastable coordination dynamics, and
if metastable coordination does not break down in diseases of the
brain, such as Parkinson’s and schizophrenia, the theory is wrong.

12. Conclusion

In 1979, Francis Crick (Crick, 1979) in a special issue of Scientific
American on the brain said the following: ‘‘If a breakthrough in the
study of the brain does come, it is perhaps likely to be at the level of
the overall control of the system. If the system were as chaotic as it
appears to be, it would not enable us to perform even the simplest
tasks satisfactorily. To invent a possible, although unlikely example,
the discovery that the brain was run phasically by some kind of
periodic clock, as a computer is would probably constitute a major
breakthrough’’ (p.137). According to the general theory outlined
here, the brain is a self-organized, pattern forming dynamical
system living in the metastable regime where fluctuations play
a key role. This is definitely not the way computers, at least as
we know them, are organized. Nevertheless, on the basis of much
research in coordination dynamics, Crick’s intuition has a ring of
truth about it. Though the brain is not a clock, it is run phasically:
coordination dynamics shows that relative phase is a key quantity
that couples diverse regions of the brain whose neurons exhibit
tendencies to oscillate. The primitives of the brain do appear to
take the formof oscillations and the natural language of the brain is
the way these oscillatory ensembles are coupled. The two ‘‘forces’’
that constitute the general theory deal fundamentallywith (mostly
bidirectional) information exchange. One force is the strength of
coupling between the elements; this allows information to be
distributed to all participating elements and is a key to integrative,
collective action. The other is the ability of individual elements to
express their autonomy, and thereby minimize the influence of
others. Self-organization in the metastable regime is the interplay
of both.4 This brings us to a final point, perhaps more on the
philosophical side but with quite cogent scientific consequences.
Your neural network and my neural network are not the same.
The nodes are different, the connections too; individual differences
exist at all levels of structure and function. You walk differently
than me, you think differently than me, you feel differently than
me, you respond to the environment differently than me, you
structure your world differently thanme. A general theory, then, is
not (or not only) about the contents ofmind and emotions and their
neural correlates, which are unique to each of us. Rather it is about
the dynamical processes of forming, breaking, uniting, dissolving,
and harmonizing patterns of activity that occur at all levels, and
are common to all of us. A general theory of behavioral and brain
coordination applies just as much to the mind-world of ideas as it
does to the brain-world of cells.
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