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a b s t r a c t

Social neuroscience shows a growing interest for the study of social interaction. Investigating its neural

underpinnings has been greatly facilitated through the development of hyperscanning, a neuroimaging tech-

nique allowing to record simultaneously the brain activity of multiple humans engaged in a social exchange.

However, the analysis of spontaneous social interaction requires the indexing of the ongoing behavior. Since

spontaneous exchanges are intrinsically unconstrained, only a manual indexing by frame-by-frame analysis

has been used so far. Here we present an automatic measure of imitation during spontaneous social inter-

action. Participants gestures are characterized with Bag of Words and 1-Class SVM models. Then a measure

of imitation is derived from the likelihood ratio between these models. We apply this method to hyperscan-

ning EEG recordings of spontaneous imitation of bimanual hand movements. The comparison with manual

indexing validates the method at both behavioral and neural levels, demonstrating its ability to discriminate

significantly the periods of imitation and non-imitation during social interaction.

© 2014 Elsevier B.V. All rights reserved.
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. Introduction

Social interaction is at the core of human behavior. While cognitive

cience have made tremendous progress in the understanding of cog-

ition from isolated individuals, less is known about people engaged

n an interactive context [1,2]. Developmental psychology pioneered

n the study of reciprocal interaction, pointing out its key role dur-

ng early life for the development of our sociocognitive abilities [3,4].

ecently, social psychology and social neuroscience also moved from

he study of social perception in isolated individuals to the study

f social interaction in pairs or group of humans. In social neuro-

cience, this has been facilitated by the development of hyperscan-

ing, a neuroimaging technique allowing the simultaneous recording

f brain activity in multiple participants [5–7]. Nevertheless, hyper-

canning studies of social interaction need protocols where human

nteraction unfolds in a spontaneous manner thus leading to uncon-

trained dynamics at the social level [8]. To date, the behavioral anal-

sis of the interaction—especially imitation—has been mostly made
✩ This paper has been recommended for acceptance by G. Sanniti di Baja.
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y hand, a long process of frame-by-frame video analysis. Here we

ropose an automatic indexing of imitative behavior during sponta-

eous interaction. We compare this technique with the traditional

rame-by-frame approach and quantify how it impacts subsequent

eurodynamical analyses at both intra- and inter-individual levels

ith hyperscanning-EEG.

.1. Imitative behavior in spontaneous interaction

During social interaction, people spontaneously imitate their so-

ial interaction partners, including mimicry of his gestures [9], his

acial expressions [10,11], his mannerism [9], and his posture [12,13].

imicry facilitates affiliation [14] and good understanding between

ndividuals [12,15]. Many terms are associated with mimicry in

he literature: behavior matching [16], mirroring, congruence and the

hameleon effect [9]. This nonconscious form of imitation is notably

ifferent than conscious imitation which is commonly considered as a

oundation for learning, socialization and communication [17,18]. In

pontaneous exchanges, it becomes for instance a mean of commu-

ication [19]. While mimicry is still present, the behavior becomes

ore complex, giving rise to alternation between roles of imitator

nd driver. In neuroscience, this lack of control forced the study

f imitation to be limited at the intra-individual level and induced
tion during social interaction: A behavioral and hyperscanning-EEG
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Fig. 1. Experimental setup.
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context [20–22]. Hyperscanning studies however allowed to

investigate spontaneous imitations, thus helping to identify the neu-

rodynamic signatures of spontaneous human interactions at both

intra- and inter-individual levels [23–25]. However, investigating

spontaneous imitation requires a fine grained analysis of the ongoing

interaction, only accessible by video manual indexing.

1.2. Automatic analysis of imitative behavior

To overcome the tedious task of frame-by-frame analysis, auto-

matic methods have been proposed to assess imitative or coordinate

behavior. Several studies propose to assess movement coordination

in spontaneous interaction (meetings [26–28], music bands [29,30],

psychotherapy sessions [31–34] etc.).

Among these studies, some focuses on head motion, assessed by

motion capture [35–37] or image-based tracking methods [26–28,30,

29,38]. Other studies assess movement of the participants globally,

with image processing techniques like motion energy [39–41,33,34,

42,31,43]. The main pitfall of these algorithms is that they capture

the movement globally. They can assess if two participants have the

same activation but cannot discriminate between two motions with

the same dynamic.

Sun and colleagues proposed to combine a variant of motion en-

ergy image with quadtree decomposition to localize motion regions

[44,45,43]. Then, kinematic features between the regions that contain

motion are compared. Yet, none of these methods characterizes finely

the shape of gestures or combine both shape and dynamic description

of gestures to assess imitation.

The method we propose in this paper leverages refined gesture

description, as proposed for action recognition, to improve automatic

analysis of imitative behavior.

2. Material and methods

2.1. Material

2.1.1. Participants

Five adults participated in the study. All subjects had normal or

corrected-to-normal vision. They were all right-handed. All were vol-

unteers to participate to the study and had given their written in-

formed consent. The project of this study was reviewed and approved

by the local Ethical Committee for Biomedical Research (agreement

No. 104-10). None of the participant reported a history of psychiatric

or neurological disease.

2.1.2. Protocol

The experimental protocol was divided into three blocks separated

by a 10 min rest. Each block comprised three runs of 2 min. A run was

composed of three conditions: observation of a prerecorded library of

20 meaningless hand gestures, a spontaneous imitation and the imi-

tation of a video. In this paper, we focus on the spontaneous imitation

where the subjects were told that they could produce hand gestures

of their own and imitate the other’s hand gestures whenever they

would like it. Imitation is thus produced at will and the social roles

(i.e. imitator or driver) are not fixed by the experimenter but sponta-

neously emerge from the interaction between the two subjects. Each

run started by a 30 s period of rest, and before each imitation condi-

tions, the subjects were asked to produce a 30 s of meaningless hand

gestures. At the end of the experiment, a short block of calibration

comprised periods of blinks, jaws contraction, and head movements

of 30 s each.

2.1.3. Dual-video acquisition

The experiment was conducted in three connected laboratory

rooms, one for each participant and the third one for the computer-

ized monitoring of the experiment (see Fig. 1). The participants were
Please cite this article as: E. Delaherche et al., Automatic measure of imita

benchmark, Pattern Recognition Letters (2014), http://dx.doi.org/10.1016
omfortably seated, their forearms resting on a small table in order

o prevent arms and neck movements. They faced a 21-in. TV screen.

wo synchronized digital video cameras filmed the hand gestures.

n LED light controlled manually, via a switch, by an experimenter

ocated in the recording room, signaled the session start. The output

f the video records was transmitted to two TV monitors installed in

he recording room allowing the experimenter to control that partic-

pants followed the requested instructions.

.1.4. Hyperscanning-EEG acquisition

The neural activities of the two participants were simultaneously

ecorded with a dual-EEG recording system. It was composed of two

cticap helmets with 64 active electrodes arranged according to the

nternational 10/20 system. The helmets were aligned to nasion, inion

nd left and right pre-auricular points. A three-dimensional Polhemus

igitizer was used to record the position of all electrodes and fiducial

andmarks (nasion and pre-auricular points). The ground electrode

as placed on the right shoulder of the subjects and the reference was

xed on the nasion. The impedances were maintained below 10 k�.

ata acquisition was performed using two 64-channels Brainamp MR

mplifiers from the Brain Products Company (Germany). Signals were

nalog filtered between 0.16 Hz and 250 Hz, amplified and digitalized

t 500 Hz with a 16-bit vertical resolution in the range of ±3.2 mV.

.2. Behavioral data analysis

The video records of hand movements during the free episodes

f imitation of each other’s hand movements were digitized. Then,

he LED signals recorded on the two videos at the beginning of each

ession was used to synchronize the frames of the two partners. They

ere coded using a revised version of the ELAN program [46,47]

hat offers a simultaneous presentation of two frames from differ-

nt sources on the ELAN window. This software allows an analysis

f the behavioral frames on separate channels of the window and a

ecording of time (latency, duration) and occurrence of behavioral

vents.

Imitation was assessed when the hand movements of the two

artners showed a similar morphology (describing a circle, waving,

winging etc.) and a similar direction (up, down, right, left etc.). We

abeled respectively Im and NIm the periods with imitation and with-

ut imitation.

The reliability of our fine grained analysis was assessed using Co-

en’s kappa. Inter-observer agreement between two independent

oders was performed on 25% of the recordings following previous
tion during social interaction: A behavioral and hyperscanning-EEG

/j.patrec.2014.09.002

http://dx.doi.org/10.1016/j.patrec.2014.09.002


E. Delaherche et al. / Pattern Recognition Letters 000 (2014) 1–9 3

ARTICLE IN PRESS
JID: PATREC [m5G;November 26, 2014;17:35]

Fig. 2. Automatic indexing.
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tudies with the identical task [23,25]. The values of kappa coefficient

as 0.83.

.3. Automatic indexing

We proposed a binary classifier to automatically index the

articipants gestures as identical (“imitation”) or different (“non-

mitation”). The gestures are represented with histograms of visual

ords. Then a metric between gestures, based on 1-Class SVM is pro-

osed and a threshold on the metric is learnt with a Leave One Out

pproach to differentiate imitation from non-imitation (see Fig. 2).

.3.1. Gesture visual description

Bag of Words models have been successfully applied in computer

ision to describe objects, gestures or actions [48–50]. The method

s based on a dictionary modeling where each image contains some

f the words of the dictionary. In computer vision, the words are

eatures extracted from the image. Bag of Words models rely on four

teps: interest point detection, interest point description, codebook

eneration, mapping to codebook.

Interest point detection. In this step, spatio-temporal interest points

re extracted on the image. Several detectors exists in the literature

ike STIP [51] which is derived from the Harris Detector or Dollãr [52]

tc. Dollãr detector was preferred to other detectors for its robustness

nd for the number of interest points detected was superior, leading

o a better characterization of the gesture performed. Dollãr selects

ocal maxima over space and time of a response function based on a

patial Gaussian convolved with a quadrature pair of 1D Gabor filters

long the time axis (σ = 1 et τ = 4).

Feature description. This step consists in describing the variations

f image values in the spatio-temporal neighborhood of each interest

oint. This is the description of the interest points that will differenti-

te events from each other. Several descriptors exist in the literature:

IFT, SURF, Histogram Of Oriented Gradient (HOG) and Histogram

f Oriented Flow (HOF) etc. In this study, we used a combination of

OG and HOF, which characterizes both the shape and dynamics of

estures. The performance of these descriptors was demonstrated for

esture and action recognition tasks [49]. The size of the neighbor-

ood is 19 × 19 × 11 (nine pixels each side of the point in the spacial
Please cite this article as: E. Delaherche et al., Automatic measure of imita

benchmark, Pattern Recognition Letters (2014), http://dx.doi.org/10.1016
omain and five pixels in the temporal domain). These neighborhoods

re then divided in 3 × 3 × 2 cells. Each cell is described with a his-

ogram (four orientations for HOG and four orientations for HOF plus

n extra bin to code the absence of motion). The size of the feature

ectors is 162 (72 bins for HOG and 90 bins for HOF).

Codebook generation. This step consists in generating a codebook

rom the feature vectors. A K-means clustering is applied to all the

eature vectors. The number of clusters define the number of words

n the codebook and the codewords are represented by the centers of

he clusters.

Mapping to codebook. This last step consists in mapping the feature

ector for each frame to the codewords of the codebook. Each frame

f the video is represented by an histogram of the codewords for the

rame. For each dyad, a new visual word codebook is learnt.

.3.2. Metric between gestures

We proposed to derive an algorithm for novelty detection based

n 1-Class SVM to estimate the similarity between two gestures A

nd B [53,54]. First, each gesture is modeled with a 1-Class SVM to

stimate their probability density functions PA and PB. A distance is

erived from the likelihood ratio between the following hypothesis:

H0 : PA = PB (the gestures are identical)

H1 : PA �= PB (the gestures are different)

Distribution estimation (1-Class SVM). 1-Class SVM was proposed to

stimate the density of a unknown probability density function [55].

or i = 1, 2, . . . , n, the training vectors hi are assumed to be distributed

ccording to a unknown probability density function P(.). The aim of

-Class SVM is to learn from the training set a function f such that

ost of the data in the training set belong to the set:

h = {h ∈ X \ f (h) ≥ 0}
nd the region Rh is minimal. The function f is estimated such that a

ector drawn from P(.) is likely to fall in Rh and a vector that does not

all in Rh is not likely to be drawn from P(.). The decision function is:

(h) =
n∑

i=1

αik(h, hi)− ρ
tion during social interaction: A behavioral and hyperscanning-EEG
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As in our case, h represents an histogram of codewords, we chose

the histogram intersection kernel. The kernel k(., .) is defined over

X × X by : k(hi, hj) = ∑d
i=1 min(hi, hj), where d denotes the size of the

histogram.

Distance. Let hAi
, i = 1, . . . , n and hBi

, i = 1, . . . , n be the sequence

of codewords histograms for a pair of gestures, n denotes the size of

the window. Two gestures are similar if the likelihood ratio between

H0 and H1 is inferior to a given threshold. The likelihood ratio can

be interpreted as the similarity sAiBj
between hAi

and hBi
(see [56] for

further details):

sAiBj
=

n∑
j=1

(
n∑

i=1

αA
i k(hBj

, hAi
)

)
+

n∑
j=1

(
n∑

i=1

αB
i k(hAj

, hBi
)

)

where αA
i

(resp. αB
i

) is determined by solving the 1-Class SVM on

hAi
(resp. hBi

). This distance can be interpreted as testing a model

learned on hAi
with the data from hBi

. For robustness [54], we adopt

the following distance in which the histograms of hAi
and hBi

are

alternatively used for learning and for testing.

Imitation/non-imitation classifiers. Imitation is synchronous when

the partners produce the same gesture at the same time. Imitation

is deferred when the same gestures are produced with a slight delay

between the partners.

To assess these two forms of imitation, the proposed metric is

computed: (a) between simultaneous gestures, (b) between slightly

delayed gestures. Thus, we obtain a recurrence matrix Ri,j where point

(i, j) corresponds to the similarity between the gesture produced at

time i by participant A and the gesture produced at time j by partic-

ipant B. Recurrence matrices represent the points in time when the

dyadic partners are in similar states.

The main diagonal of this recurrence matrix corresponds to in-

phase gestures. The similarity between slightly delayed gestures is

represented in a neighborhood around this main diagonal. Points lo-

cated below the main diagonal inform on time when partner A is

leading and B is following. Points located above are informative of an

opposite leading-following relationship.

The recurrence matrix is then quantified:

R
quantif
i,j

= �(ε − sAiBj
)

where � is the Heaviside function, ε a threshold on the similar-

ity measure and sAiBj
the similarity measure. The recurrence points

(R
quantif
i,j

= 1) represent points in time when the partners gestures are

similar.

Based on this recurrence matrix, we proposed three classifiers to

identify imitation phases:

• Classifier 1: Similarity from the main diagonal of the recurrence

matrix. This first method only quantifies synchronous imitation.

If s1i = R
quantif
i,i

= 1, the decision is “imitation” otherwise “non-

imitation”. The quantification threshold ε varies the decision

“imitation/non-imitation”.
• Classifier 2: Similarity from the number of recurrence points on the

main diagonal. This second method also assess synchronous imita-

tion. To ensure the metric is robust to slight variations, the decision

is taken on a group of point located in the temporal neighborhood

of the point under decision. It comes up to applying a mean filter

on the main diagonal of the recurrence matrix.

s2i =
i+k1/2∑

l=i−k1/2

R
quantif

l,l

For this method, the decision relies on the selection of two param-

eters: the quantification threshold ε and the size of the mean filter

k1.
• Classifier 3: Similarity from the number of recurrence points in the

neighborhood of the main diagonal. To assess deferred imitation,
Please cite this article as: E. Delaherche et al., Automatic measure of imita

benchmark, Pattern Recognition Letters (2014), http://dx.doi.org/10.1016
we can consider a neighborhood of the main diagonal of the re-

currence matrix. This way, we do not need to make assumption

on who is the leader and who is the follower.

s3i =
i+k2/2∑

l=i−k2/2

i+k2/2∑
m=i−k2/2

R
quantif

l,m

For this method, the decision relies on the selection of two param-

eters: the quantification threshold ε and the size of the neighbor-

hood: k2.

The Fig. 3 represents for the same interaction the similarity mea-

ure from the three classifiers described above.

.4. EEG data analysis

All EEG analyses were conducted with [57] software and utilized

he built-in statistics and signal processing toolbox.

.4.1. Artifacts correction

Blink, muscles and head movements artifacts were filtered by op-

imal projection (FOP) methodology [58].

EEG signals were then controlled visually another time. The few

emaining artifacts (<0.1% of the data) were excluded from the analy-

is and we smoothed the joints by a convolution with a half-Hanning

indow of 400 ms in order to avoid border artifacts induced by the

uppression.

.4.2. Neurodynamical analyses

Following filtering corrections, EEG data were re-referenced to a

ommon average reference (CAR) and transformed by discrete Hilbert

ethods for specific narrow frequency bands: theta (4–7 Hz), alpha-

u (8–12 Hz), beta (13–30 Hz) and gamma (31–48 Hz). Phases and

mplitudes extracted using the Hilbert transform on all band passed

ignals met the reliability criteria defined in past studies [59].

The local activity was measured by the power. We averaged the

quare of the amplitude over windows of 400 ms. The connectivity at

oth intra- and inter-brain levels was analyzed using phase locking

alue (PLV) [60]. For each pair (i, k) of electrodes, this was done for

ach frequency band according to the relation:

LVi,k = 1

N

∣∣∣∣∣
N∑

t=1

expj(φi(t)−φk(t))

∣∣∣∣∣
here N is the number of samples considered in each 800 ms window,

is the phase and || the complex modulus. Thus, PLV measure equates

if the two signals are perfectly phase locked across the whole time

indow observed, and equates 0 if they are totally unsynchronized.

hus, PLV is equal to one minus the circular variance of phases’ differ-

nces. Note that for the inter-brain PLV, so-called hyper-PLV or hPLV,

lectrode i and k are respectively for the helmets 1 and 2.

For all the EEG measures (i.e. power, PLV and hPLV), we calcu-

ated the two-tailed t-statistics across all dyads between the period

f imitation and non-imitation. To test the validity of the manual and

utomatic indexing of behavior, we also calculated these statistics on

urrogate data following [23]. This method reconstructs behavioral

ndexings by shuffling the manually indexed phases of imitation and

on-imitation. By picking alternatively, and at random, the durations

rom the real imitative and non-imitative periods, the timing between

EG data and behavioral data are broken but the distributions of imi-

ative and non-imitative duration stay identical.

. Results

.1. Behavioral data: manual vs. automatic indexing

We evaluated the performance of the metric based on 1-Class

VM to detect phases of imitation in the BBC database. The sys-

em performance was evaluated in different configurations for the
tion during social interaction: A behavioral and hyperscanning-EEG
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Fig. 3. Imitation/non-imitation classifiers.
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Table 2

Classification results imitation/non-imitation: F1 score.

Window size 0.6 0.8 1

Baseline motion energy 0.5348 0.5562 0.5946

Classifier 1

HOG − k = 64 0.6825 0.6969 0.7083

HOG − k = 128 0.6998 0.7163 0.7281

HOF − k = 64 0.6400 0.6594 0.6872

HOF − k = 128 0.6387 0.6598 0.6901

HOG + HOF − k = 64 0.6581 0.6763 0.7064

HOG + HOF − k = 128 0.6711 0.6958 0.7223

HOG + HOF − k = 256 0.6946 0.7221 0.7474

Classifier 2

HOG − k = 64 0.7277 0.7383 0.7367

HOG − k = 128 0.7491 0.7505 0.7469

HOF − k = 64 0.7181 0.7120 0.7325

HOF − k = 128 0.7180 0.7153 0.7234

HOG + HOF − k = 64 0.7185 0.7144 0.7277

HOG + HOF − k = 128 0.7419 0.7397 0.7471
esture description (see Table 1) and the three imitation classifiers

k1 = 1 s–4 s, k2 = 1 s–7 s). Performance is obtained with “Leave One

ut” cross-validation. The parameters are adjusted to optimize the

ystem performance on N − 1 video sequences and the performances

re evaluated on the video left out (with N, the number of video se-

uences in the database). For each configuration and each method,

e trained binary classifier for discriminating conditions imitation/

on-imitation. Three window sizes were used for training 1-Class

VM models T = 0.6, 0.8 and 1 s.

We used F1 measure to assess the performance of the classifier.

he results are presented in Table 2. The best performance is

btained with method 3 (similarity based on the number of points of

ecurrence in a neighborhood of the main diagonal) for a dictionary

f 256 visual words, the use of combined HOG and HOF descriptors

nd windows of 0.8 s (F1 = 0.7848). It is nevertheless noted that the

ombination of both types of descriptors only slightly improves the

erformance compared to configurations where HOG or HOF are used

lone. In general, the HOG descriptors, which describe the shape of

estures, give better performance than the descriptors based on the

ptical flow (HOF), which rather characterize the dynamic gestures.

baseline measure of mimicry was assessed with motion energy

mage as gesture descriptors and correlation as the measure of

imilarity. Our classifiers based on HOG + HOF and SVM outperform

his baseline measure. Moreover, the Classifier 3 consistently gives
Table 1

Configurations for gesture description.

Codebook size HOG HOF HOG + HOF

k = 64 x x x

k = 128 x x x

k = 256 x

Please cite this article as: E. Delaherche et al., Automatic measure of imita

benchmark, Pattern Recognition Letters (2014), http://dx.doi.org/10.1016
etter performance than the Classifier 2, itself performing better than

lassifier 1.

For the best classifier (Classifier 3, T = 0.8 s), we compared the

ercentage of time windows correctly classified according to the
HOG + HOF − k = 256 0.7368 0.7451 0.7672

Classifier 3

HOG − k = 64 0.7320 0.7349 0.7355

HOG − k = 128 0.7653 0.7453 0.7459

HOF − k = 64 0.7384 0.7427 0.7475

HOF − k = 128 0.7392 0.7496 0.7443

HOG + HOF − k = 64 0.7476 0.7300 0.7206

HOG + HOF − k = 128 0.7668 0.7602 0.7360

HOG + HOF − k = 256 0.7786 0.7848 0.7766

tion during social interaction: A behavioral and hyperscanning-EEG
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Fig. 4. Duration of imitation and non-imitation phases and corresponding percentage

of correctly classified time windows.

(a) Manual indexing

(b) Automatic indexing

Fig. 5. Illustration of the different EEG measures with the contrast in the theta fre-

quency band (3–8Hz) of imitation and non-imitation periods.
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duration of the imitation or non-imitation phase. We can see in Fig. 4

that the classifier performance is higher when the duration of the

phase is above 1 s for imitation phases and 3 s for non-imitation

phases. These performances are also more stable when the duration

of the phase is higher.

3.2. Neurophysiological data: impact of the indexing on common EEG

measures

Automatic and manual indexing are compared for both local and

distant EEG measures: power, phase-locking value (PLV), and hyper-

phase-locking value (hPLV). Fig. 5 illustrates the statistical differences

between periods of imitation and non-imitation for the theta fre-

quency band. Colors indicate the t values. The power differences are

mapped on the colors of the heads, and synchronization (PLV, hPLV)

differences are indicated by links between related electrodes. Notice

how the contrasts are similar for both automatic and manual seg-

mentation: in both cases the imitator tends to have an increase of

theta activity at both power and PLV levels while the opposite effect

occurs for the driver. Fig. 6 summarizes the global results across all

frequency bands. For each measure, positive and negative variations

are indicated in the case of manual, automatic and scrambled in-

dexing (i.e. null hypothesis). Statistically significant differences with

scrambled indexing are indicated with an asterisk (*, p < 0.05). We

can notice how the automatic indexing gives intermediate results be-

tween the scrambled and manual indexing. This demonstrates a less

precise detection of neurophysiological relevant periods of imitation

and non-imitation than with frame-by-frame analysis. Overall, the

automatic method appear to better detect PLV differences in gen-

eral, and power differences in the high frequency bands. Despite a

tendency, there is no significant results for hPLV contrasts using the

automatic indexing.
Please cite this article as: E. Delaherche et al., Automatic measure of imita

benchmark, Pattern Recognition Letters (2014), http://dx.doi.org/10.1016
. Discussion

We showed how unsupervised indexing of imitation can be ap-

lied to spontaneous social interaction. The method is compared to

he traditional manual and frame-by-frame indexing. Results show

ome differences at the behavioral level and measure how they im-

act subsequent hyperscanning-EEG analyses.

.1. Interpretations

At the technical level, we showed that our unsupervised indexing

f imitation outperforms traditional methods based on motion en-

rgy image and correlation. Taking into account a series of windows

o make the decision (Classifier 2), rather than a single interaction

indow (Classifier 1) improves the performance of the automatic in-

exing. Classifier 3 in turn integrates a neighborhood around the diag-

nal for taking the decision, thus compensating small delays between

articipants. If partners are slightly offset in time and they perform

eriodic movements in opposite directions, the similarity measure

ill be low on the diagonal of the matrix of recurrence. In particular,

f the partners are in opposite phase (one raises his arm while the
tion during social interaction: A behavioral and hyperscanning-EEG
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Fig. 6. Effects of the different indexing methods on the common EEG measures.
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other down, for example). As against, if viewed in the neighborhood of

the diagonal (for an offset equal to the period of the beat frequency),

a high similarity measure is found. In turn, the automatic indexing is

more accurate on long phases of imitation or non-imitation. This is a

side effect of considering several seconds to take a decision.

At the neurophysiological level, the EEG analyses validated the

ability of the automatic indexing to uncover biologically relevant

periods of imitation and non-imitation. PLV results were the most

statistically robust, with all frequency bands displaying a similar dif-

ferences than those uncovered by manual indexing. The automatic

indexing appearing better at detecting longer imitative periods, the

absence of statistical differences for the hPLV measure may reflect the

importance of short desynchronized and non-imitative phases in

the interaction. In any case, the statistical differences at the neu-

rophysiological level demonstrate that the automatic algorithm can

capture parameters of biological relevance.

4.2. Perspectives

First, at the technical level, some simple enhancement could im-

prove the characterization and comparison of gestures. For instance,

HOG and HOF descriptors do not capture the spacial location of the

interest points. Motion capture [61] would facilitate the matching

between participants gestures. However, it is delicate to set up in do-

mestic environments or with pathological population. Capture sen-

sors like kinect would constitute a good trade-off, providing skeletal

data with minimal invasiveness. Then, the current method provides

more than a binary decision, but a continuous distance between ges-

tures. Understanding whether human and automatic assessment of

imitation evolves according to the same continuum may help to im-

prove the method. Finally, automatic indexing of imitation could facil-

itate the understanding of pathologies, the comparison of pathological

groups [56] and to tie together physiological, neurophysiological and

behavioral levels [62].

4.3. Limitations

The current study is limited by the following factors. First, the

method concerns only the detection of imitation—and no imitation—

while interactional synchrony has been shown as a key part of inter-

individual dynamics at both behavioral and neural scales. Interac-

tional synchrony can be assessed with a low level characterization of

gestures (correlation between the motion dynamics [34,63]) or based

on the synchronicity of high level nonverbal cues, e.g. head nods

[61]. A better integration of such key parameter of social interac-

tion may further improve the classification performance. Second, the

current method does not provide the directionality of the imitation

and thus the detection of the social roles (i.e. leader/follower). This

may be an interesting development for the future since turn-taking

constitutes an important aspect of spontaneous interaction. Third,

unsupervised characterization of gestures has the advantage of not

requiring labeled gestures for training. While adequate in this setting

(meaningless hand gestures), uncovering which nonverbal cues are

most frequently imitated in natural interaction could be of interest. Fi-

nally, our analyses concerned only five dyads. This is enough to make

the proof of concept and assess the reliability of the method at both

behavioral and neural scales, but not to uncover precise anatomic

effects.

5. Conclusion

In summary, we have presented a new automatic indexing of

imitation during spontaneous social interaction in dyads. Thanks to

hyperscanning-EEG recordings, we have also compared how this au-

tomatic indexing affect common EEG measures in comparison with

the traditional frame-by-frame manual indexing. These experimental
Please cite this article as: E. Delaherche et al., Automatic measure of imita

benchmark, Pattern Recognition Letters (2014), http://dx.doi.org/10.1016
esults show that our method can significantly discriminate periods

f imitation and non-imitation at both behavioral and neural levels.

uture works need to investigate how to integrate other behavioral

arameters such as interactional synchrony for further improving

he classification performance and also for better interpretation of

he neurophysiological observations.
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